Skip to main content
Log in

N-Terminal Fused Signal Peptide Prompted Extracellular Production of a Bacillus-Derived Alkaline and Thermo Stable Xylanase in E. coli Through Cell Autolysis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Xylanases are extensively used as industrial enzymes for its ability of hydrolyzing xylan to oligosaccharides. Here, XynHB, a thermo and alkaline stable xylanase derived from Bacillus pumilus HBP8, was extracellularly produced in E. coli cells through N-terminal-fused signal peptides. We found that the matured XynHB itself could be auto-secreted out of E. coli BL21(DE3) cells at a very low level, and two Sec-pathway signal peptides, PelB and OmpA, and one dual Sec-Tat-pathway signal peptide, FhuD, could effectively prompt its extracellular production up to 12-fold. Our results showed that PelB signal peptide led to the highest extracellular production of XynHB for approximately 54.1 μg/mL, and FhuD-fused XynHB possessed the highest specific activity of 1746.0 U/mg at 70 °C. Meanwhile, our studies also indicated that PelB- and FhuD-fused XynHB might disrupt E. coli cells’ periplasm during their secretion process, thus causing cell lysis to facilitate their extracellular production. Moreover, further characterization revealed that the extracellular production of XynHB was not affected by the outer membrane permeability of E. coli cells. Our studies provided an advantageous strategy for the extracellular production of xylanase in E. coli, which may also be used for E. coli autolysis in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ventorim, R. Z., de Oliveira Mendes, T. A., Trevizano, L. M., Dos Santos Camargos, A. M., & Guimaraes, V. M. (2018). Impact of the removal of N-terminal non-structured amino acids on activity and stability of xylanases from Orpinomyces sp. PC-2. International Journal of Biological Macromolecules, 106, 312–319.

    Article  PubMed  CAS  Google Scholar 

  2. Chang, S., Guo, Y., Wu, B., & He, B. (2017). Extracellular expression of alkali tolerant xylanase from Bacillus subtilis Lucky9 in E. coli and application for xylooligosaccharides production from agro-industrial waste. International Journal of Biological Macromolecules, 96, 249–256.

    Article  PubMed  CAS  Google Scholar 

  3. Tu, T., Li, X., Meng, K., Bai, Y., Wang, Y., Wang, Z., Yao, B., & Luo, H. (2019). A GH51 alpha-L-arabinofuranosidase from Talaromyces leycettanus strain JCM12802 that selectively drives synergistic lignocellulose hydrolysis. Microbial Cell Factories, 18(1), 138.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zhang, D., Wang, Y., Zhang, C., Zheng, D., Guo, P., & Cui, Z. (2018). Characterization of a thermophilic lignocellulose-degrading microbial consortium with high extracellular xylanase activity. Journal of Microbiology and Biotechnology, 28(2), 305–313.

    Article  PubMed  CAS  Google Scholar 

  5. Zhang, G.-M., Hu, Y., Zhuang, Y.-H., Ma, L.-X., & Zhang, X.-E. (2006). Molecular cloning and heterologous expression of an alkaline xylanase from Bacillus pumilus HBP8 in Pichia pastoris. Biocatalysis and Biotransformation, 24(5), 371–379.

    Article  CAS  Google Scholar 

  6. Zhang, G., Mao, L., Zhao, Y., Xue, Y., & Ma, Y. (2010). Characterization of a thermostable xylanase from an alkaliphilic Bacillus sp. Biotechnology Letters, 32(12), 1915–1920.

    Article  PubMed  CAS  Google Scholar 

  7. Nuyens, F., van Zyl, W. H., Iserentant, D., Verachtert, H., & Michiels, C. (2001). Heterologous expression of the Bacillus pumilus endo-beta-xylanase (xynA) gene in the yeast Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 56(3-4), 431–434.

    Article  PubMed  CAS  Google Scholar 

  8. Fu, L. H., Jiang, N., Li, C. X., Luo, X. M., Zhao, S., & Feng, J. X. (2019). Purification and characterization of an endo-xylanase from Trichoderma sp., with xylobiose as the main product from xylan hydrolysis. World Journal of Microbiology and Biotechnology, 35, 171.

    Article  PubMed  Google Scholar 

  9. Liu, Q., Wang, Y., Luo, H., Wang, L., Shi, P., Huang, H., Yang, P., & Yao, B. (2015). Isolation of a novel cold-active family 11 Xylanase from the filamentous fungus Bispora antennata and deletion of its N-terminal amino acids on thermostability. Applied Biochemistry and Biotechnology, 175(2), 925–936.

    Article  PubMed  CAS  Google Scholar 

  10. Perez-Gonzalez, J. A., De Graaff, L. H., Visser, J., & Ramon, D. (1996). Molecular cloning and expression in Saccharomyces cerevisiae of two Aspergillus nidulans xylanase genes. Applied and Environmental Microbiology, 62(6), 2179–2182.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Su, L., Jiang, Q., Yu, L., & Wu, J. (2017). Enhanced extracellular production of recombinant proteins in Escherichia coli by co-expression with Bacillus cereus phospholipase C. Microbial Cell Factories, 16(1), 24.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sriyapai, T., Somyoonsap, P., Matsui, K., Kawai, F., & Chansiri, K. (2011). Cloning of a thermostable xylanase from Actinomadura sp. S14 and its expression in Escherichia coli and Pichia pastoris. Journal of Bioscience and Bioengineering, 111(5), 528–536.

    Article  PubMed  CAS  Google Scholar 

  13. Tian, B., Xu, Y., Cai, W., Huang, Q., Gao, Y., Li, X., & Huang, J. (2013). Molecular cloning and overexpression of an endo-beta-1,4-xylanase gene from Aspergillus niger in industrial Saccharomyces cerevisiae YS2 strain. Applied Biochemistry and Biotechnology, 170(2), 320–328.

    Article  PubMed  CAS  Google Scholar 

  14. Zhao, S., Liao, X. Z., Wang, J. X., Ning, Y. N., Li, C. X., Liao, L. S., Liu, Q., Jiang, Q., Gu, L. S., Fu, L. H., Yan, Y. S., Xiong, Y. R., He, Q. P., Su, L. H., Duan, C. J., Luo, X. M., & Feng, J. X. (2019). Transcription factor Atf1 regulates expression of cellulase and xylanase genes during solid-state fermentation of ascomycetes. Applied and Environmental Microbiology, 85(24).

  15. Zafar, A., Aftab, M. N., Din, Z. U., Aftab, S., Iqbal, I., Shahid, A., Tahir, A., & Haq, I. U. (2016). Cloning, expression, and purification of xylanase gene from Bacillus licheniformis for use in saccharification of plant biomass. Applied Biochemistry and Biotechnology, 178(2), 294–311.

    Article  PubMed  CAS  Google Scholar 

  16. Luo, H., Li, J., Yang, J., Wang, H., Yang, Y., Huang, H., Shi, P., Yuan, T., Fan, Y., & Yao, B. (2009). A thermophilic and acid stable family-10 xylanase from the acidophilic fungus Bispora sp. MEY-1. Extremophiles, 13(5), 849–857.

    Article  PubMed  CAS  Google Scholar 

  17. Lu, Y., Fang, C., Wang, Q., Zhou, Y., Zhang, G., & Ma, Y. (2016). High-level expression of improved thermo-stable alkaline xylanase variant in Pichia Pastoris through codon optimization, multiple gene insertion and high-density fermentation. Scientific Reports, 6(1), 37869.

    Article  PubMed  PubMed Central  Google Scholar 

  18. He, H., Zhai, C., Mei, M., Rao, Y., Liu, Y., Wang, F., Ma, L., Jiang, Z., Zhang, G., & Yi, L. (2019). Functional expression of porcine interferon-alpha using a combinational strategy in Pichia pastoris GS115. Enzyme and Microbial Technology, 122, 55–63.

    Article  PubMed  CAS  Google Scholar 

  19. McHunu, N. P., Singh, S., & Permaul, K. (2009). Expression of an alkalo-tolerant fungal xylanase enhanced by directed evolution in Pichia pastoris and Escherichia coli. Journal of Biotechnology, 141(1-2), 26–30.

    Article  PubMed  CAS  Google Scholar 

  20. Bhardwaj, N., Verma, V. K., Chaturvedi, V., & Verma, P. (2019). Cloning, expression and characterization of a thermo-alkali-stable xylanase from Aspergillus oryzae LC1 in Escherichia coli BL21(DE3). Protein Expression and Purification, 168, 105551.

    Article  PubMed  Google Scholar 

  21. Tsirigotaki, A., De Geyter, J., Sostaric, N., Economou, A., & Karamanou, S. (2017). Protein export through the bacterial Sec pathway. Nature Reviews., 15, 21–36.

    PubMed  CAS  Google Scholar 

  22. Choi, J. H., & Lee, S. Y. (2004). Secretory and extracellular production of recombinant proteins using Escherichia coli. Applied Microbiology and Biotechnology, 64(5), 625–635.

    Article  PubMed  CAS  Google Scholar 

  23. Tullman-Ercek, D., DeLisa, M. P., Kawarasaki, Y., Iranpour, P., Ribnicky, B., Palmer, T., & Georgiou, G. (2007). Export pathway selectivity of Escherichia coli twin arginine translocation signal peptides. The Journal of Biological Chemistry, 282(11), 8309–8316.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Terpe, K. (2006). Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Applied Microbiology and Biotechnology, 72(2), 211–222.

    Article  PubMed  CAS  Google Scholar 

  25. Peng, C., Shi, C., Cao, X., Li, Y., Liu, F., & Lu, F. (2019). Factors influencing recombinant protein secretion efficiency in gram-positive bacteria: signal peptide and beyond. Frontiers in Bioengineering and Biotechnology, 7, 139.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Low, K. O., Muhammad Mahadi, N., & Md Illias, R. (2013). Optimisation of signal peptide for recombinant protein secretion in bacterial hosts. Applied Microbiology and Biotechnology, 97(9), 3811–3826.

    Article  PubMed  CAS  Google Scholar 

  27. Kruger, N. J. (1994). The Bradford method for protein quantitation. Methods in Molecular Biology, 32, 9–15.

    PubMed  CAS  Google Scholar 

  28. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426–428.

    Article  CAS  Google Scholar 

  29. Cai, Z., Xu, W., Xue, R., & Lin, Z. (2008). Facile, reagentless and in situ release of Escherichia coli intracellular enzymes by heat-inducible autolytic vector for high-throughput screening. Protein Engineering, Design & Selection, 21(11), 681–687.

    Article  CAS  Google Scholar 

  30. Martinez, A., Ramirez, O. T., & Valle, F. (1997). Improvement of culture conditions to overproduce beta-galactosidase from Escherichia coli in Bacillus subtilis. Applied Microbiology and Biotechnology, 47(1), 40–45.

    Article  PubMed  CAS  Google Scholar 

  31. Dovala, D., Rath, C. M., Hu, Q., Sawyer, W. S., Shia, S., Elling, R. A., Knapp, M. S., & Metzger, L. E. t. (2016). Structure-guided enzymology of the lipid A acyltransferase LpxM reveals a dual activity mechanism. Proceedings of the National Academy of Sciences of the United States of America, 113, E6064–e6071.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Tran, A. X., Lester, M. E., Stead, C. M., Raetz, C. R., Maskell, D. J., McGrath, S. C., Cotter, R. J., & Trent, M. S. (2005). Resistance to the antimicrobial peptide polymyxin requires myristoylation of Escherichia coli and Salmonella typhimurium lipid A. The Journal of Biological Chemistry, 280(31), 28186–28194.

    Article  PubMed  CAS  Google Scholar 

  33. Mergulhao, F. J., Summers, D. K., & Monteiro, G. A. (2005). Recombinant protein secretion in Escherichia coli. Biotechnology Advances, 23(3), 177–202.

    Article  PubMed  CAS  Google Scholar 

  34. Petersen, T. N., Brunak, S., von Heijne, G., & Nielsen, H. (2011). SignalP 4.0: discriminating signal peptides from transmembrane regions. Nature Methods, 8(10), 785–786.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

LY and CY acknowledge the support from State Key Laboratory of Biocatalysis and Enzyme Engineering.

Funding

This work was supported by the National Key Technology R & D Program of China (2018YFD0500203 to LY, CY, and LF) and the National Natural Science Foundation of China (No. 31870057 to LY).

Author information

Authors and Affiliations

Authors

Contributions

FZ, HH, TD, and HG conducted the experiments. FH, LF, and CY contributed the conceptualization. FZ, HH, and LY analyzed the results. LY conceived the idea for the project and wrote the paper with FZ and HH.

Corresponding author

Correspondence to Li Yi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., He, H., Deng, T. et al. N-Terminal Fused Signal Peptide Prompted Extracellular Production of a Bacillus-Derived Alkaline and Thermo Stable Xylanase in E. coli Through Cell Autolysis. Appl Biochem Biotechnol 192, 339–352 (2020). https://doi.org/10.1007/s12010-020-03323-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03323-9

Keywords

Navigation