Skip to main content

Advertisement

Log in

Purification and characterization of an endo-xylanase from Trichoderma sp., with xylobiose as the main product from xylan hydrolysis

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Fungal endo-β-1,4-xylanases (endo-xylanases) can hydrolyze xylan into xylooligosaccharides (XOS), and have potential biotechnological applications for the exploitation of natural renewable polysaccharides. In the current study, we aimed to screen and characterize an efficient fungal endo-xylanase from 100 natural humus-rich soil samples collected in Guizhou Province, China, using extracted sugarcane bagasse xylan (SBX) as the sole carbon source. Initially, 182 fungal isolates producing xylanases were selected, among which Trichoderma sp. strain TP3-36 was identified as showing the highest xylanase activity of 295 U/mL with xylobiose (X2) as the main product when beechwood xylan was used as substrate. Subsequently, a glycoside hydrolase family 11 endo-xylanase, TXyn11A, was purified from strain TP3-36, and its optimal pH and temperature for activity against beechwood xylan were identified to be 5.0 and 55 °C, respectively. TXyn11A was stable across a broad pH range (3.0–10.0), and exhibited strict substrate specificity, including xylan from beechwood, wheat, rye, and sugarcane bagasse, with Km and Vmax values of 5 mg/mL and 1250 μmol/mg min, respectively, toward beechwood xylan. Intriguingly, the main product obtained from hydrolysis of beechwood xylan by TXyn11A was xylobiose, whereas SBX hydrolysis resulted in both X2 and xylotriose. Overall, these characteristics of the endo-xylanase TXyn11A indicate several potential industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CMC:

Carboxymethylcellulose

DNS:

3,5-Dinitrosalicylic acid

DTT:

Dithiothreitol

GH:

Glycoside hydrolase

HPLC:

High-performance liquid chromatography

ITS:

Internal transcribed spacer

PDA:

Potato dextrose agar

SB:

Sugarcane bagasse

SBX:

SB xylan

SMART:

Simple modular architecture research tool

Tm:

Temperature

XOS:

Xylooligosaccharides

X1:

Xylose

X2:

Xylobiose

X3:

Xylotriose

X4:

Xylotetraose

References

  • Aachary AA, Prapulla SG (2011) Xylooligosaccharides (XOS) as an emerging prebiotic: microbial synthesis, utilization, structural characterization, bioactive properties, and applications. Compr Rev Food Sci Food Saf 10:2–16

    CAS  Google Scholar 

  • Bhatia L, Sharma A, Bachheti RK, Chandel AK (2019) Lignocellulose derived functional oligosaccharides: production, properties, and health benefits. Prep Biochem Biotechnol. https://doi.org/10.1080/10826068.2019.1608446

    Article  PubMed  Google Scholar 

  • Bhardwaj N, Kumar B, Agarwal K, Chaturvedi V, Verma P (2019) Purification and characterization of a thermo-acid/alkali stable xylanases from Aspergillus oryzae LC1 and its application in Xylo-oligosaccharides production from lignocellulosic agricultural wastes. Int J Biol Macromol 122:1191–1202

    CAS  PubMed  Google Scholar 

  • Bian J, Peng F, Peng XP, Peng P, Xu F, Sun RC (2013) Structural features and antioxidant activity of xylooligosaccharides enzymatically produced from sugarcane bagasse. Bioresour Technol 127:236–241

    CAS  PubMed  Google Scholar 

  • Biely P, Puchart V, Stringer MA, Krogh KBRM (2014) Trichoderma reesei XYN VI—a novel appendage dependent eukaryotic glucuronoxylan hydrolases. FEBS J 281:3894–3903

    CAS  Google Scholar 

  • Biely P, Singh S, Puchart V (2016) Towards enzymatic breakdown of complex plant xylan structures: state of the art. Biotechnol Adv 34:1260–1274

    CAS  Google Scholar 

  • Brienzo M, Carvalho W, Milagres AMF (2010) Xylooligosaccharides production from alkali-pretreated sugarcane bagasse using xylanases from Thermoascus aurantiacus. Appl Biochem Biotechnol 162:1195–1205

    CAS  PubMed  Google Scholar 

  • Chaverri P (2015) Systematics of the Trichoderma harzianum species complex and the re-identification of commercial biocontrol strains. Mycologia 107:558–590

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chong SL, Virkki L, Maaheimo H, Juvonen M, Derba-Maceluch M, Koutaniemi S, Roach M, Sundberg B, Tuomainen P, Mellerowicz EJ, Tenkanen M (2014) O-acetylation of glucuronoxylan in Arabidopsis thaliana wild type and its change in xylan biosynthesis mutants. Glycobiology 24:494–506

    CAS  PubMed  Google Scholar 

  • Chung YC, Hsieh CP, Chan YC (2002) Effect of xylooligosaccharides on the intestinal properties of ICR mice. Taiwan J Agric Chem Food Sci 40:377–384

    CAS  Google Scholar 

  • Chung YC, Hsu CK, Ko CY, Chan YC (2007) Dietary intake of xylooligosaccharides improves the intestinal microbiota, fecal moisture, and pH value in the elderly. Nutr Res 27:756–761

    CAS  Google Scholar 

  • Ding C, Li M, Hu Y (2018) High-activity production of xylanase by Pichia stipitis: purification, characterization, kinetic evaluation and xylooligosaccharides production. Int J Biol Macromol 117:72–77

    CAS  PubMed  Google Scholar 

  • Ebringerova A, Heinze T (2000) Xylan and xylan derivatives-biopolymers with valuable properties, 1. Naturally occurring xylans structures, isolation procedures and properties. Macromol Rapid Commun 21:542–556

    CAS  Google Scholar 

  • Ebringerová A, Hromádková Z, Heinze T (2005) Hemicellulose. In: Heinze T (ed) Polysaccharides I: structure, characterization and use. Springer, Berlin, pp 1–67

    Google Scholar 

  • Espinoza K, Eyzaguirre J (2018) Identification, heterologous expression and characterization of a novel glycoside hydrolase family 30 xylanase from the fungus Penicillium purpurogenum. Carbohydr Res 468:45–50

    CAS  PubMed  Google Scholar 

  • Evtuguin DV, Tomás JL, Silva AMS, Neto CP (2003) Characterization of an acetylated heteroxylan from Eucalyptus globulus Labill. Carbohydr Res 338:597–604

    CAS  PubMed  Google Scholar 

  • Fang HY, Chang SM, Lan CH, Fang TJ (2008) Purification and characterization of a xylanase from Aspergillus carneus M34 and its potential use in photoprotectant preparation. Process Biochem 43:49–55

    CAS  Google Scholar 

  • Fernández-Espinar M, Piñaga F, de Graaff L, Visser J, Ramón D, Vallés S (1994) Purification, characterization and regulation of the synthesis of an Aspergillus nidulans acidic xylanase. Appl Microbiol Biotechnol 42:555–562

    Google Scholar 

  • Grigoriev IV, Nikitin R, Haridas S, Kuo A, Ohm R, Otillar R, Riley R, Salamov A, Zhao X, Korzeniewski F, Smirnova T, Nordberg H, Dubchak I, Shabalov I (2014) MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res 42(1):D699–D704

    CAS  PubMed  Google Scholar 

  • Jiang SX, Zhao S, Lu CY, Xue JL, Duan CJ, Feng JX (2017) A combined process is used for efficient isolation and purification of xylobiose from xylanase-hydrolysed sugarcane bagasse xylan hydrolysate. Ind Crop Prod 109:637–643

    CAS  Google Scholar 

  • Jing L, Zhao S, Xue JL, Zhang Z, Yang Q, Xian L, Feng JX (2015) Isolation and characterization of a novel Penicillium oxalicum strain Z1–3 with enhanced cellobiohydrolase production using cellulase-hydrolyzed sugarcane bagasse as carbon source. Ind Crop Prod 77:666–675

    CAS  Google Scholar 

  • Juturu V, Wu JC (2012) Microbial xylanases: engineering, production and industrial application. Biotechnol Adv 30:1219–1227

    CAS  Google Scholar 

  • Kajihara M, Kato S, Konishi M, Yamagishi Y, Horie Y, Ishii H (2000) Xylooligosaccharide decreases blood ammonia levels in patients with liver cirrhosis. Am J Gastroenterol 95:2514

    Google Scholar 

  • Karlsson EN, Schmitz E, Linares-Pastén JA, Adlercreutz P (2018) Endo-xylanases as tools for production of substituted xylooligosaccharides with prebiotic properties. Appl Microbiol Biotechnol 102:9081–9088

    Google Scholar 

  • Katsimpouras C, Dedes G, Thomaidis NS, Topakas E (2019) A novel fungal GH30 xylanase with xylobiohydrolase auxiliary activity. Biotechnol Biofuels 12:120

    PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    CAS  PubMed  Google Scholar 

  • Kumar V, Dangi AK, Shukla P (2018) Engineering thermostable microbial xylanases toward its industrial applications. Mol Biotechnol 60:226–235

    CAS  PubMed  Google Scholar 

  • Li M, Yang Q (2007) Isolation and characterization of a β-tubulin gene from Trichoderma harzianum. Biochem Genet 45:529–534

    CAS  PubMed  Google Scholar 

  • Li Q, Wu QH, Sun BG, Yang R, Hou X, Teng C, Zhang CN, Li XT (2018) Effect of disulfide bridge on hydrolytic characteristics of xylanase from Penicillium janthinellum. Int J Biol Macromol 120:405–413

    CAS  PubMed  Google Scholar 

  • Linares-Pasten JA, Aronsson A, Karlsson EN (2018) Structural considerations on the use of endo-xylanases for the production of prebiotic xylooligosaccharides from biomass. Curr Protein Pept Sci 19:48–67

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu TJ, Williams DL, Pattathil S, Li MY, Hahn MG, Hodge DB (2014) Coupling alkaline pre-extraction with alkaline-oxidative post-treatment of corn stover to enhance enzymatic hydrolysis and fermentability. Biotechnol Biofuels 7:48

    PubMed  PubMed Central  Google Scholar 

  • Luo HY, Yang J, Li J, Shi PJ, Huang HQ, Bai YG, Fan YL, Yao B (2010) Molecular cloning and characterization of the novel acidic xylanase XYLD from Bispora sp. MEY-1 that is homologous to family 30 glycosyl hydrolases. Appl Microbiol Biotechnol 86:1829–1839

    CAS  PubMed  Google Scholar 

  • Mano MCR, Neri-Numa IA, da Silva JB, Paulino BN, Pessoa MG, Pastore GM (2018) Oligosaccharide biotechnology: an approach of prebiotic revolution on the industry. Appl Microbiol Biotechnol 102:17–37

    CAS  PubMed  Google Scholar 

  • Mazumder K, Peña MJ, O’Neill MA, York WS (2012) Structural characterization of the heteroxylans from poplar and switchgrass. Methods Mol Biol 908:215–228

    CAS  PubMed  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    CAS  Google Scholar 

  • Moura P, Barata R, Carvalheiro F, Girio F, Loureiroias MC, Esteves MP (2007) In vitro fermentation of xylo-oligosaccharides from corn cobs autohydrolysis by Bifidobacterium and Lactobacillus strains. Lebensm Wiss Technol 40:963–972

    CAS  Google Scholar 

  • Naidu DS, Hlangothi SP, John MJ (2018) Bio-based products from xylan: a review. Carbohydr Polym 179:28–41

    CAS  PubMed  Google Scholar 

  • Nakamichi Y, Fouquet T, Ito S, Matsushika A, Inoue H (2019a) Mode of action of GH30-7 reducing-end xylose-releasing exoxylanase A (Xyn30A) from the filamentous fungus Talaromyces cellulolyticus. Appl Environ Microbiol 85:e00552–e619

    CAS  PubMed  Google Scholar 

  • Nakamichi Y, Fouquet T, Ito S, Watanabe M, Matsushika A, Inoue H (2019b) Structural and functional characterization of a bifunctional GH30-7 xylanase B from the filamentous fungus Talaromyces cellulolyticus. J Biol Chem 294:4065–4078

    CAS  PubMed  Google Scholar 

  • OECD (2017) Safety considerations for biotechnology 1992. Organization for Economic Co-operation and Development. https://www.oecd.org/sti/biotech/2375496.pdf. Accessed 28 July 2017

  • Paes G, Berrin JG, Beaugrand J (2012) GH11 xylanases: structure/function/properties relationships and applications. Biotechnol Adv 30:564–592

    CAS  PubMed  Google Scholar 

  • Peña MJ, Zhong RQ, Zhou GK, Richardson EA, O’Neill MA, Darvill AG, York WS, Ye ZH (2007) Arabidopsis irregular xylem8 and irregular xylem9: implications for the complexity of glucuronoxylan biosynthesis. Plant Cell 19:549–563

    PubMed  Google Scholar 

  • Polizeli MLTM, Rizzatti ACS, Monti R, Terenzi HF, Jorge JA, Amorim DS (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67:577–591

    CAS  PubMed  Google Scholar 

  • Romanowska I, Polak J, Bielecki S (2006) Isolation and properties of Aspergillus niger IBT-90 xylanase for bakery. Appl Microbiol Biotechnol 69:665–671

    CAS  PubMed  Google Scholar 

  • Seifert E (2014) Origin Pro 9.1: scientific data analysis and graphing software—software review. J Chem Inf Model 54:1552

    CAS  PubMed  Google Scholar 

  • Silva LAO, Terrasan CRF, Carmona EC (2015) Purification and characterization of xylanases from Trichoderma inhamatum. Electron J Biotechnol 18:307–313

    CAS  Google Scholar 

  • Smith PJ, Wang HT, York WS, Peña MJ, Urbanowicz BR (2017) Designer biomass for next-generation biorefineries: leveraging recent insights into xylan structure and biosynthesis. Biotechnol Biofuels 10:286

    PubMed  PubMed Central  Google Scholar 

  • Sporck D, Reinoso FAM, Rencoret J, Gutiérrez A, Del Rio JC, Ferrza A, Milagres AMF (2017) Xylan extraction from pretreated sugarcane bagasse using alkaline and enzymatic approaches. Biotechnol Biofuels 10:296

    PubMed  PubMed Central  Google Scholar 

  • Tan LUL, Wong KKY, Saddler JN (1985) Functional characteristics of two d-xylanases purified from Trichoderma harzianum. Enzyme Microb Technol 7:431–436

    CAS  Google Scholar 

  • Tan SS, Li DY, Jiang ZQ, Zhu YP, Shi B, Li LT (2008) Production of xylobiose from the autohydrolysis explosion liquor of corncob using Thermotoga maritima xylanase B (XynB) immobilized on nickel-chelated Eupergit C. Bioresour Technol 99:200–204

    CAS  PubMed  Google Scholar 

  • Teng C, Yan Q, Jiang Z, Fan G, Shi B (2010) Production of xylooligosaccharides from the steam explosion liquor of corncobs coupled with enzymatic hydrolysis using a thermostable xylanase. Bioresour Technol 101:7679–7682

    CAS  PubMed  Google Scholar 

  • Tenkanen M, Vršanská M, Siika-Aho M, Wong DW, Puchart V, Penttilä M, Saloheimo M, Biely P (2013) Xylanase XYN IV from Trichoderma reesei showing exo- and endo-xylanase activity. FEBS J 280:285–301

    CAS  PubMed  Google Scholar 

  • Tischler BY, Hohl TM (2019) Menacing mold: recent advances in Aspergillus pathogenesis and host defense. J Mol Biol. https://doi.org/10.1016/j.jmb.2019.03.027

    Article  PubMed  Google Scholar 

  • Uday USP, Choudhury P, Bandyopadhyay TK, Bhunia B (2015) Classification, mode of action and production strategy of xylanase and its application for biofuel production from water hyacinth. Int J Biol Macromol 82:1041–1054

    PubMed  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Shinsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, San Diego, pp 315–322

    Google Scholar 

  • Wong KKY, Tan LUL, Saddler JN (1986) Purification of a third distinct xylanase from the xylanolytic system of Trichoderma harzianum. Can J Microbiol 32:570–576

    CAS  Google Scholar 

  • Xian L, Feng JX (2018) Purification and biochemical characterization of a novel mesophilic glucoamylase from Aspergillus tritici. Int J Biol Macromol 107:1122–1130

    CAS  PubMed  Google Scholar 

  • Xian L, Wang F, Luo X, Feng YL, Feng JX (2015) Purification and characterization of a highly efficient calcium-independent α-amylase from Talaromyces pinophilus 1-95. PLoS ONE 10:e0121531

    PubMed  PubMed Central  Google Scholar 

  • Xu QS, Yan YS, Feng JX (2016) Efficient hydrolysis of raw starch and ethanol fermentation: a novel raw starch-digesting glucoamylase from Penicillium oxalicum. Biotechnol Biofuels 9:216

    PubMed  Google Scholar 

  • Xue JL, Zhao S, Liang RM, Yin X, Jiang SX, Su LH, Yang Q, Duan CJ, Liu JL, Feng JX (2016) A biotechnological process efficiently co-produces two high value-added products, glucose and xylooligosaccharides, from sugarcane bagasse. Bioresour Technol 204:130–138

    CAS  PubMed  Google Scholar 

  • Yan YS, Zhao S, Liao LS, He QP, Xiong YR, Wang L, Li CX, Feng JX (2017) Transcriptomic profiling and genetic analyses reveal novel key regulators of cellulase and xylanase gene expression in Penicillium oxalicum. Biotechnol Biofuels 10:279

    PubMed  PubMed Central  Google Scholar 

  • Yang Q, Gao Y, Huang YP, Xu QS, Luo XM, Liu JL, Feng JX (2015) Identification of three important amino acid residues of xylanase AfxynA from Aspergillus fumigatus for enzyme activity and formation of xylobiose as the major product. Process Biochem 50:571–581

    CAS  Google Scholar 

  • Zhang Z, Liu JL, Lan JY, Duan CJ, Ma QS, Feng JX (2014) Predominance of Trichoderma and Penicillium in cellulolytic aerobic filamentous fungi from subtropical and tropical forests in China, and their use in finding highly efficient beta-glucosidase. Biotechnol Biofuels 7:107

    Google Scholar 

Download references

Acknowledgements

We would like to thank Mu-Qing Zhang group from State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, China, for providing raw SB materials. This work was financially supported by Grants from the Autonomous Research Project of State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources (SKLCUSA-a201902, SKLCUSA-a201923), the Guangxi BaGui Scholars Program Foundation (Grant No. 2011A001), the Guangxi Natural Science Foundation (Grant No. 2012GXNSFGA060005), Training Program for 1000 Young and Middle-Aged Key Teachers in Guangxi at 2019, and the ‘One Hundred Person’ Project of Guangxi.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuai Zhao or Jia-Xun Feng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1563 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, LH., Jiang, N., Li, CX. et al. Purification and characterization of an endo-xylanase from Trichoderma sp., with xylobiose as the main product from xylan hydrolysis. World J Microbiol Biotechnol 35, 171 (2019). https://doi.org/10.1007/s11274-019-2747-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-019-2747-1

Keywords

Navigation