Skip to main content
Log in

High Productivity Ethanol from Solid-State Fermentation of Steam-Exploded Corn Stover Using Zymomonas mobilis by N2 Periodic Pulsation Process Intensification

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Solid-state fermentation, featured by water-saving, eco-friendly and high concentration product, is a promising technology in lignocellulosic ethanol industry. However, in solid-state fermentation system, large gas content inside the substrate directly leads to high oxygen partial pressure and inhibits ethanol fermentation. Z. mobilis can produce ethanol from glucose near the theoretical maximum value, but this ethanol yield would be greatly decreased by high oxygen partial pressure during solid-state fermentation. In this study, we applied N2 periodic pulsation process intensification (NPPPI) to ethanol solid-state fermentation, which displaced air with N2 and provided a proper anaerobic environment for Z. mobilis. Based on the water state distribution, the promotion effects of NPPPI on low solid loading and solid-state fermentation were analyzed to confirm the different degrees of oxygen inhibition in ethanol solid-state fermentation. During the simultaneous saccharification solid-state fermentation, the NPPPI group achieved 45.29% ethanol yield improvement and 30.38% concentration improvement compared with the control group. NPPPI also effectively decreased 58.47% of glycerol and 84.24% of acetic acid production and increased the biomass of Z. mobilis. By coupling the peristaltic enzymatic hydrolysis and fed-batch culture, NPPPI made the ethanol yield and concentration reach 80.11% and 55.06 g/L, respectively, in solid-state fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chen, H., & Qiu, W. (2010). Key technologies for bioethanol production from lignocellulose. Biotechnology Advances, 28(5), 556–562.

    Article  PubMed  CAS  Google Scholar 

  2. Zhu, Y., Kim, T. H., Lee, Y., Chen, R., & Elander, R. T. (2006). Enzymatic production of xylooligosaccharides from corn stover and corn cobs treated with aqueous ammonia. Applied Biochemistry and Biotechnology, 130(1-3), 586–598.

    Article  Google Scholar 

  3. Himmel, M. E., Ding, S.-Y., Johnson, D. K., Adney, W. S., Nimlos, M. R., Brady, J. W., & Foust, T. D. (2007). Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Science, 315, 804–807.

    Article  PubMed  CAS  Google Scholar 

  4. Hongzhang, C., & Liying, L. (2007). Unpolluted fractionation of wheat straw by steam explosion and ethanol extraction. Bioresource Technology, 98(3), 666–676.

    Article  PubMed  CAS  Google Scholar 

  5. Wyman, C. E. (2001). Twenty years of trials, tribulations, and research progress in bioethanol technology. Applied Biochemistry and Biotechnology, 91, 5–21.

    Article  PubMed  Google Scholar 

  6. Ballesteros, I., Ballesteros, M., Cabanas, A., Carrasco, J., Martin, C., Negro, M., Saez, F., & Saez, R. (1991). Selection of thermotolerant yeasts for simultaneous saccharification and fermentation (SSF) of cellulose to ethanol. Applied Biochemistry and Biotechnology, 28, 307–315.

    Article  PubMed  Google Scholar 

  7. Liu, Z.-H., & Chen, H. (2016). Periodic peristalsis enhancing the high solids enzymatic hydrolysis performance of steam exploded corn stover biomass. Biomass and Bioenergy, 93, 13–24.

    Article  CAS  Google Scholar 

  8. Koppram, R., Tomás-Pejó, E., Xiros, C., & Olsson, L. (2014). Lignocellulosic ethanol production at high-gravity: Challenges and perspectives. Trends in Biotechnology, 32(1), 46–53.

    Article  PubMed  CAS  Google Scholar 

  9. Chen, H. (2013). Modern solid state fermentation. Dordrecht: Springer.

    Book  Google Scholar 

  10. He, Q., & Chen, H. (2015). Comparative study on occurrence characteristics of matrix water in static and gas double-dynamic solid-state fermentations using low-field NMR and MRI. Analytical and Bioanalytical Chemistry, 407(30), 9115–9123.

    Article  PubMed  CAS  Google Scholar 

  11. Weiss, N. D., Felby, C., & Thygesen, L. G. (2019). Enzymatic hydrolysis is limited by biomass–water interactions at high-solids: Improved performance through substrate modifications. Biotechnology for Biofuels, 12(1), 3.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhao, Q., Wang, L. and Chen, H. (2019) Effect of novel pretreatment of steam explosion associated with ammonium sulfite process on enzymatic hydrolysis of corn straw. Applied biochemistry and biotechnology, 1-13.

  13. Bai, F., Anderson, W., & Moo-Young, M. (2008). Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnology Advances, 26(1), 89–105.

    Article  PubMed  CAS  Google Scholar 

  14. Rogers, P., Lee, K., Skotnicki, M. and Tribe, D. (1982), In microbial reactions, springer, pp. 37-84.

  15. Kremer, T. A., LaSarre, B., Posto, A. L., & McKinlay, J. B. (2015). N2 gas is an effective fertilizer for bioethanol production by Zymomonas mobilis. Proceedings of the National Academy of Sciences, 112, 2222–2226.

    Article  CAS  Google Scholar 

  16. Bringer, S., Finn, R. K., & Sahm, H. (1984). Effect of oxygen on the metabolism of Zymomonas mobilis. Archives of Microbiology, 139(4), 376–381.

    Article  CAS  Google Scholar 

  17. Kalnenieks, U. (2006). Physiology of Zymomonas mobilis: Some unanswered questions. Advances in Microbial Physiology, 51, 73–117.

    Article  PubMed  CAS  Google Scholar 

  18. Kirby, M. E., Mirza, M. W., Leigh, T., Oldershaw, L., Reilly, M., & Jeffery, S. (2019). Destruction of Staphylococcus aureus and the impact of chlortetracycline on biomethane production during anaerobic digestion of chicken manure. Heliyon, 5(11), e02749.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Metcalf, W. W., Zhang, J. K., & Wolfe, R. S. (1998). An Anaerobic, Intrachamber Incubator for Growth of Methanosarcina spp. on Methanol-Containing Solid Media. Applied & Environmental Microbiology, 64(2), 768–770.

    Article  CAS  Google Scholar 

  20. Balish, E., Brown, J. F., & Wilkins, T. D. (1977). Transparent plastic incubator for the anaerobic glove box. Applied & Environmental Microbiology, 33(3), 525–527.

    Article  CAS  Google Scholar 

  21. Zhao, Z.-M., Wang, L., & Chen, H.-Z. (2015). Variable pressure pulsation frequency optimization in gas double-dynamic solid-state fermentation (GDSSF) based on heat balance model. Process Biochemistry, 50(2), 157–164.

    Article  CAS  Google Scholar 

  22. Chen, H.-Z., Xu, J., & Li, Z.-H. (2005). Temperature control at different bed depths in a novel solid-state fermentation system with two dynamic changes of air. Biochemical Engineering Journal, 23(2), 117–122.

    Article  CAS  Google Scholar 

  23. Chen, H., Qin, L., Li, H., et al. Appl Biochem Biotechnol, 172, 2218–2226.

  24. Liu, J., Li, D. B., & Yang, J. C. (2007). Operating characteristics of solid-state fermentation bioreactor with air pressure pulsation. Applied Biochemistry & Microbiology, 43, 234–239.

    Article  CAS  Google Scholar 

  25. Chen, H. Z., Zhao, Z.-M., & Li, H.-Q. The effect of gas double-dynamic on mass distribution in solid-state fermentation. Enzyme & Microbial Technology, 58-59, 14–21.

  26. Chen, H., Shao, M., & Li, H. (2014). Effects of gas periodic stimulation on key enzyme activity in gas double-dynamic solid state fermentation (GDD-SSF). Enzyme and Microbial Technology, 56, 35–39.

    Article  PubMed  CAS  Google Scholar 

  27. Ghose, T. (1987). Measurement of cellulase activities. Pure and Applied Chemistry, 59(2), 257–268.

    Article  CAS  Google Scholar 

  28. Liu, Z.-H., & Chen, H.-Z. (2016). Periodic peristalsis releasing constrained water in high solids enzymatic hydrolysis of steam exploded corn Stover. Bioresource Technology, 205, 142–152.

    Article  PubMed  CAS  Google Scholar 

  29. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., & Crocker, D. (2008). Determination of structural carbohydrates and lignin in biomass. Laboratory analytical procedure, 1617, 1–16.

    Google Scholar 

  30. Olofsson, K., Rudolf, A., & Lidén, G. (2008). Designing simultaneous saccharification and fermentation for improved xylose conversion by a recombinant strain of Saccharomyces cerevisiae., 134, 112–120.

  31. Liu, Z. H., & Chen, H. Z. (2015). Biomass–water interaction and its correlations with enzymatic hydrolysis of steam-exploded corn stover. ACS Sustainable Chemistry & Engineering, 4, 1274–1285.

    Article  CAS  Google Scholar 

  32. Roberts, K. M., Lavenson, D. M., Tozzi, E. J., McCarthy, M. J., & Jeoh, T. (2011). The effects of water interactions in cellulose suspensions on mass transfer and saccharification efficiency at high solids loadings. Cellulose, 18(3), 759–773.

    Article  CAS  Google Scholar 

  33. Zhao, J., & Chen, H. (2013). Correlation of porous structure, mass transfer and enzymatic hydrolysis of steam exploded corn stover. Chemical Engineering Science, 104, 1036–1044.

    Article  CAS  Google Scholar 

  34. Wang, X., He, Q., Yang, Y., Wang, J., Haning, K., Hu, Y., Wu, B., He, M., Zhang, Y., & Bao, J. Advances and Prospects in Metabolic Engineering of Zymomonas mobilis. Metabolic Engineering, 50, 57 S1096717618300363.

  35. Ishikawa, H., Nobayashi, H., & Tanaka, H. (1990). Mechanism of fermentation performance of Zymomonas mobilis under oxygen supply in batch culture. Journal of Fermentation and Bioengineering, 70(1), 34–40.

    Article  CAS  Google Scholar 

  36. Tanaka, H., Ishikawa, H., Osuga, K., & Takagi, Y. (1990). Fermentative ability of Zymomonas mobilis under various oxygen supply conditions in batch culture. Journal of Fermentation and Bioengineering, 69(4), 234–239.

    Article  CAS  Google Scholar 

  37. Xu, Z., Wang, Q., Jiang, Z., Yang, X.-x., & Ji, Y. (2007). Enzymatic hydrolysis of pretreated soybean straw. Biomass and Bioenergy, 31(2-3), 162–167.

    Article  CAS  Google Scholar 

  38. Andreaus, J., Azevedo, H., & Cavaco-Paulo, A. (1999). Effects of temperature on the cellulose binding ability of cellulase enzymes. Journal of Molecular Catalysis B: Enzymatic, 7(1-4), 233–239.

    Article  CAS  Google Scholar 

  39. Moreau, R. A., Powell, M. J., Fett, W. F., & Whitaker, B. D. (1997). News & Notes: The effect of ethanol and oxygen on the growth of zymomonas mobilis and the levels of hopanoids and other membrane lipids. Current Microbiology, 35(2), 124–128.

    Article  PubMed  CAS  Google Scholar 

  40. Bondesson, P.-M., & Galbe, M. (2016). Process design of SSCF for ethanol production from steam-pretreated, acetic-acid-impregnated wheat straw. Biotechnology for Biofuels, 9(1), 222.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Kim, Y., Hendrickson, R., Mosier, N. S., Ladisch, M. R., Bals, B., Balan, V., Dale, B. E., Dien, B. S., & Cotta, M. A. (2010). Effect of compositional variability of distillers’ grains on cellulosic ethanol production. Bioresource Technology, 101(14), 5385–5393.

    Article  PubMed  CAS  Google Scholar 

  42. Öhgren, K., Vehmaanperä, J., Siika-Aho, M., Galbe, M., Viikari, L., & Zacchi, G. (2007). High temperature enzymatic prehydrolysis prior to simultaneous saccharification and fermentation of steam pretreated corn Stover for ethanol production. Enzyme and Microbial Technology, 40(4), 607–613.

    Article  CAS  Google Scholar 

  43. Wang, R., Unrean, P., & Franzén, C. J. (2016). Model-based optimization and scale-up of multi-feed simultaneous saccharification and co-fermentation of steam pre-treated lignocellulose enables high gravity ethanol production. Biotechnology for Biofuels, 9(1), 88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Minihane, B. J., & Brown, D. E. (1986). Fed-batch culture technology. Biotechnology Advances, 4(2), 207–218.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the National Key Research and Development Program of China (Grant No.2018YFB1501702) and the Transformational Technologies for Clean Energy and Demonstration (Strategic Priority Research Program of the Chinese Academy of Sciences, Grant No.XDA 21060300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lan Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Wang, L. & Chen, H. High Productivity Ethanol from Solid-State Fermentation of Steam-Exploded Corn Stover Using Zymomonas mobilis by N2 Periodic Pulsation Process Intensification. Appl Biochem Biotechnol 192, 466–481 (2020). https://doi.org/10.1007/s12010-020-03318-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03318-6

Keywords

Navigation