Skip to main content
Log in

Effect of oxygen on the metabolism of Zymomonas mobilis

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The specific growth rate of the ethanol producing bacterium Zymomonas mobilis was 25–40% lower in the presence of oxygen than under anaerobic conditions, provided the cultures were supplied with a low substrate concentration (20 g glucose/l). However, the molar growth yield of these cultures was not influenced by oxygen. With washed cell suspensions, an oxygen consumption could be initiated by the addition of either glucose, fructose, or ethanol. Cell extracts catalyzed the oxidation of NADH with oxygen at a molar ratio of 2:1. Further experiments showed that this NADH oxidase is located in the cell membrane. The specific oxygen consumption rates of cell suspensions correlated with the intracellular NADH oxidizing activities; both levels decreased with increasing concentrations of the fermentation end-product ethanol. The addition of 5 mM NaCN completely inhibited both the intracellular oxygen reduction and also the oxygen consumption of whole cells. Both catalase and superoxide dismutase were present even in anaerobically grown cells. Aeration seemed to have little effect on the level of catalase, but the superoxide dismutase activity was 5-fold higher in cells grown aerobically. Under aerobic conditions considerable amounts of acetaldehyde and acetic acid were formed in addition to the normal fermentation products, ethanol and carbon dioxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aebi H (1974) Katalase. In: Bergmeyer HU, Gawehn K (eds) Methoden der enzymatischen Analyse, vol 1. Verlag Chemie, Weinheim, pp 713–718

    Google Scholar 

  • Banauch D, Brümmer W, Ebeling W, Metz H, Rindfrey H, Lang H, Leybold K, Rick W (1975) Eine Glucose-Dehydrogenase für die Glucose-Bestimmung in Körperflüssigkeiten. Z Klin Chem Klin Biochem 13:101–107

    PubMed  Google Scholar 

  • Belaich JP, Senez JC (1965) Influence of aeration and pantothenate on growth yields of Zymomonas mobilis. J Bacteriol 89:1195–1200

    PubMed  Google Scholar 

  • Bringer S, Sprey B, Sahm H (1979) Purification and properties of alcohol oxidase from Poria contigua. Eur J Biochem 101:563–570

    PubMed  Google Scholar 

  • Bringer S, Scollar M, Sahm H (1982) Induction, isolation, and characteristics of fructose-negative mutants of Zymomonas mobilis. Paper no. V-39, Abstracts of the 11th International Carbohydrate Symposium, Vancouver

  • Crapo JD, McCord JM, Fridovich I (1978) Preparation and assay of superoxide dismutases. In: Fleischer S, Packer L (eds) Methods in enzymology, vol 53. Academic Press, New York San Francisco London, pp 382–393

    Google Scholar 

  • Dawes EA, Large PJ (1970) Effect of starvation on the viability and cellular constituents of Zymomonas anaerobia and Zymomonas mobilis. J Gen Microbiol 60:31–42

    PubMed  Google Scholar 

  • Dawes EA, Ribbons DW, Large PJ (1966) The route of ethanol formation in Zymomonas mobilis. Biochem J 98:795–803

    PubMed  Google Scholar 

  • Dawes EA, Midgley M, Ishag M (1970) The endogeneous metabolism of anaerobic bacteria. Final technical report (Dec 1970) for Contract no. DAJA 37-67-C-0567, European Research Office, US Army

  • Finn RK, Bringer S, Sahm H (1984) Fermentation of arabinose to ethanol by Sarcina ventriculi. Appl Microbiol Biotechnol 19:161–166

    Article  Google Scholar 

  • Gibbs M, De Moss RD (1954) Anaerobic dissimilation of 14C-labelled glucose and fructose by Pseudomonas lindneri. J Biol Chem 207:689–694

    PubMed  Google Scholar 

  • Goodman AE, Rogers PL, Skotnicki ML (1982) Minimal medium for isolation of auxotrophic Zymomonas mutants. Appl Environ Microbiol 44:496–498

    PubMed  Google Scholar 

  • Gornall AG, Bardawill CJ, David MM (1949) Determination of serum proteins by means of the biuret reaction. J Biol Chem 177:751–766

    Google Scholar 

  • Jakoby WB (1963) Aldehyde dehydrogenase. In: Boyer PD, Lardy H, Myrbäck K (eds) The enzymes, vol 7. Academic Press, New York London, pp 203–221

    Google Scholar 

  • Lindner P (1931) Termobacterium mobile, ein mexikanisches Bakterium als neues Einsäuerungsbakterium für Rübenschnitzel. Z Ver Dsch Zuckerind 81:25–36

    Google Scholar 

  • Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474

    PubMed  Google Scholar 

  • McGill DJ, Dawes EA (1971) Glucose and fructose metabolism in Zymomonas anaerobia. Biochem J 125:1059–1068

    PubMed  Google Scholar 

  • Morris JG (1976) Oxygen and the obligate anaerobe. J Appl Bact 40:229–244

    Google Scholar 

  • Raps S, De Moss RD (1962) Glycolytic enzymes in Zymomonas mobilis. J Bacteriol 84:115–118

    PubMed  Google Scholar 

  • Rogers PL, Lee KJ, Skotnicki ML, Tribe DE (1982) Ethanol production by Zymomonas mobilis. Adv Biochem Eng 23:37–84

    Google Scholar 

  • Schreder K, Brunner R, Hampe R (1934) Die anaerobe und aerobe Gärung von Pseudomonas Lindneri Kluyver in glucosehaltiger anorganischer Nährlösung. Biochem Z 273:223–242

    Google Scholar 

  • Sivakanesan R, Dawes EA (1980) Anaerobic glucose and serine metabolism in Staphylococcus epidermis. J Gen Microbiol 118:143–157

    PubMed  Google Scholar 

  • Swings J, De Ley J (1977) The biology of Zymomonas. Bacteriol Rev 41:1–46

    PubMed  Google Scholar 

  • Toran-Diaz J, Jain VK, Baratti J (1983) Effect of fructose concentration and aeration on ethanol production by Zymomonas mobilis. Biotechnol Lett 5:697–702

    Google Scholar 

  • Truesdale GA, Downing AL, Lowden GF (1955) The solubility of oxygen in pure water and sea-water. J Appl Chem 5:53–62

    Google Scholar 

  • Wills C, Kratofil P, Londo D, Martin T (1981) Characterization of the two alcohol dehydrogenases of Zymomonas mobilis. Arch Biochem Biophys 210:775–785

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor Dr. H. G. Schlegel on the occasion of his 60th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bringer, S., Finn, R.K. & Sahm, H. Effect of oxygen on the metabolism of Zymomonas mobilis . Arch. Microbiol. 139, 376–381 (1984). https://doi.org/10.1007/BF00408383

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00408383

Key words

Navigation