Skip to main content
Log in

Recovery of Astaxanthin-Containing Oil from Haematococcus pluvialis by Nano-dispersion and Oil Partitioning

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The feasibilities of cell disruption by homogenization-assisted high-pressure nano-dispersion and recovery of astaxanthin-containing oil by oil partitioning in oil-acetone-water solution were examined. The total fatty acid content of Haematococcus pluvialis was 414.6 mg/g cell, and the astaxanthin content was 4.4% of oil. Extra oil was added to the solution in order to recover oil through instability of dispersion status instead of solvent evaporation. A total amount of energy of 0.34 kWh/L was consumed for acetone evaporation at 50 °C, whereas fully 1.86 kWh/L of energy for water evaporation was consumed. When soybean oil was added to the solution after partial acetone evaporation, the oil-recovery yield was 97.8%, while the yield after full evaporation was 97.6% in 10-g/L solution. However, the energy consumed for partial evaporation (0.29 kWh/L) was much lower than that for full evaporation (0.40 kWh/L). When H. pluvialis oil was added to the solution after partial evaporation, the oil-recovery yield decreased to 90.6% due to the impurity of crude H. pluvialis oil in 10-g/L solution. Methods such as refining of H. pluvialis oil, increase of microalgae dosage for cell disruption, and increase of the injection amount of extra oil can help to enhance oil recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fu, C. C., Hung, T. C., Chen, J. Y., Su, C. H., & Wu, W. T. (2010). Hydrolysis of microalgae cell walls for production of reducing sugar and lipid extraction. Bioresource Technology, 100, 8750–8754.

    Article  Google Scholar 

  2. Praveenkumar, R., Lee, K., Lee, J., & Oh, Y. K. (2015). Breaking dormancy: an energy-efficient means of recovering astaxanthin from microalgae. Green Chemistry, 17, 1226–1234.

    Article  CAS  Google Scholar 

  3. Choi, S. A., Jung, J. Y., Kim, K., Lee, J. S., Kwon, J. H., Kim, S. W., Yang, J. W., & Park, J. Y. (2014). Acid-catalyzed hot-water extraction of docosahexaenoic acid (DHA)-rich lipids from Aurantiochytrium sp. KRS101. Bioresource Technology, 161, 469–472.

    Article  CAS  Google Scholar 

  4. Li, Q., Du, W., & Liu, D. (2008). Perspectives of microbial oils for biodiesel production. Applied Microbiology and Biotechnology, 80(5), 749–756.

    Article  CAS  Google Scholar 

  5. Chatsungnoen, T., & Chisti, Y. (2016). Optimization of oil extraction from Nannochloropsis salina biomass paste. Algal Research, 15, 100–109.

    Article  Google Scholar 

  6. Cho, H. S., Oh, Y. K., Park, S. C., Lee, J. W., & Park, J. Y. (2013). Effects of enzymatic hydrolysis on lipid extraction from Chlorella vulgaris. Renewable Energy, 54, 156–160.

    Article  CAS  Google Scholar 

  7. Lee, Y. C., Huh, Y. S., Farooq, W., Chung, J., Han, J. I., & Shin, H. J. (2013). Lipid extractions from docosahexaenoic acid (DHA)-rich and oleaginous Chlorella sp. biomasses by organic-nanoclays. Bioresource Technology, 137, 74–81.

    Article  CAS  Google Scholar 

  8. Park, J. Y., Lee, K., Choi, S. A., Jeong, M. J., Kim, B., Lee, J. S., & Oh, Y. K. (2015). Sonication-assisted homogenization system for improved lipid extraction from Chlorella vulgaris. Renewable Energy, 79, 3–8.

    Article  CAS  Google Scholar 

  9. Park, J. Y., Park, M. S., Lee, Y. C., & Yang, J. W. (2015). Advances in direct transesterification of algal oils from wet biomass. Bioresource Technology, 184, 267–275.

    Article  CAS  Google Scholar 

  10. Halim, R., Harun, R., Danquah, M. K., & Webley, P. A. (2012). Microalgal cell disruption for biofuel development. Applied Energy, 91, 116–121.

    Article  CAS  Google Scholar 

  11. Chisti, Y., & Moo-Young, M. (1986). Disruption of microbial cells for interacellular products. Enzyme and Microbial Technology, 8, 194–204.

    Article  CAS  Google Scholar 

  12. Wayama, M., Ota, S., Matsuura, H., Nango, N., Hirata, A., & Kawano, S. (2013). Three-dimensional ultrastructural study of oil and astaxanthin accumulation during encystment in the green alga Haematococcus pluvialis. PLoS One, 8, 1–9.

    Article  Google Scholar 

  13. Hagen, C., Siegmund, S., & Braune, W. (2002). Ultrastructural and chemical changes in the cell wall of Haematococcus pluvialis (Volvocales, Chlorophyta) during aplanospore formation. European Journal of Phycology, 37, 217–226.

    Article  Google Scholar 

  14. Guerin, M., Huntley, M. E., & Olaizola, M. (2003). Haematococcus astaxanthin: applications for human health and nutrition. Trends in Biotechnology, 21(5), 210–216.

    Article  CAS  Google Scholar 

  15. Mann, V., Harker, M., Pecker, I., & Hirschberg, J. (2000). Metabolic engineering of astaxanthin production in tobacco flowers. Nature Biotechnology, 18(8), 888–892.

    Article  CAS  Google Scholar 

  16. Han, D., Li, Y., & Hu, Q. (2013). Astaxanthin in microalgae: pathways, functions and biotechnological implications. Algae, 28, 131–147.

    Article  CAS  Google Scholar 

  17. Lorenz, R. T., & Cysewski, G. R. (2000). Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends in Biotechnology, 18(4), 160–167.

    Article  CAS  Google Scholar 

  18. Damiani, M. C., Leonardi, P. I., Pieroni, O. I., & Caceres, E. J. (2006). Ultrastructure of the cyst wall of Haematococcus pluvialis (Chlorophyceae): wall development and behaviour during cyst germination. Phycologia, 45, 616–623.

    Article  Google Scholar 

  19. Montsant, A., Zarka, A., & Boussiba, S. (2001). Presence of a non-hydrolysable biopolymer in the cell wall of vegetative cells and astaxanthin-rich cysts of Haematococcus pluvialis (Chlorophyceae). Marine Biotechnology, 3(6), 515–521.

    Article  CAS  Google Scholar 

  20. Kodner, R. B., Summons, R. E., & Knoll, A. H. (2009). Phylogenetic investigation of the aliphatic, non-hydrolyzable biopolymer algaenan, with a focus on the green algae. Organic Geochemistry, 40, 854–862.

    Article  CAS  Google Scholar 

  21. Yap, B. H. J., Crawford, S. A., Dagastine, R. R., Scales, P. J., & Martin, G. J. O. (2016). Nitrogen deprivation of microalgae: effect on cell size, cell wall thickness, cell strength, and resistance to mechanical disruption. Journal of Industrial Microbiology & Biotechnology, 43(12), 1671–1680.

    Article  CAS  Google Scholar 

  22. Safi, C., Ursu, A. V., Laroche, C., Zebib, B., Merah, O., Pontalier, P. Y., & Vaca-Garcia, C. (2014). Aqueous extraction of proteins from microalgae: Effect of different cell disruption methods. Algal Research, 3, 61–65.

    Article  Google Scholar 

  23. Machmudah, S., Shotipruk, A., Goto, M., Sasaki, M., & Hirose, T. (2006). Extraction of astaxanthin from Haematococcus pluvialis using supercritical CO2 and ethanol as entrainer. Industrial Engineering Chemistry Research, 45, 3652–3657.

    Article  CAS  Google Scholar 

  24. Catchpole, O., Moreno, T., Montanes, F., & Tallon, S. (2018). Perspectives on processing of high value lipids using supercritical fluids. Journal of Supercritical Fluids, 134, 260–268.

    Article  CAS  Google Scholar 

  25. Molino, A., Mehariya, S., Iovine, A., Larocca, V., Di Sanzo, G., Martino, M., Casella, P., Chianese, S., & Musmarra, D. (2018). Extraction of astaxanthin and lutein from microalga Haematococcus pluvialis in the red phase using CO2 supercritical fluid extraction technology with ethanol as co-solvent. Marine Drugs, 16(11), 432.

    Article  CAS  Google Scholar 

  26. Machmudah, S., Wahyudionob, Kanda, H., & Goto, M. (2018). Supercritical fluids extraction of valuable compounds from algae: Future perspectives and challenges. Engineering Journal, 22(5), 13–30.

    Article  CAS  Google Scholar 

  27. Higuera-Ciapara, I., Felix-Valenauela, L., Goycoolea, F. M., & Arguelles-Monal, W. (2004). Microencapsulation of astaxanthin in a chitosan matrix. Carbohydrate Polymers, 56, 41–45.

    Article  CAS  Google Scholar 

  28. Choi, Y. Y., Hong, M. E., & Sim, S. J. (2015). Enhanced astaxanthin extraction efficiency from Haematococcus pluvialis via the cyst germination in outdoor culture systems. Process Biochemistry, 50, 2275–2280.

    Article  CAS  Google Scholar 

  29. Lepage, G., & Roy, C. C. (1984). Improved recovery of fatty acid through direct transesterification without prior extraction or purification. Journal of Lipid Research, 25(12), 1391–1396.

    CAS  PubMed  Google Scholar 

  30. Crowell, A. M. J., Wall, M. J., & Coucette, A. A. (2013). Maximizing recovery of water-soluble proteins through acetone precipitation. Analytica Chimca Acta, 796, 48–54.

    Article  CAS  Google Scholar 

  31. Choi, S. A., Oh, Y. K., Lee, J., Sim, S. J., Hong, M. E., Park, J. Y., Kim, M. S., Kim, S. W., & Lee, J. S. (2019). High-efficiency cell disruption and astaxanthin recovery from Haematococcus pluvialis cyst cells using room-temperature imidazolium-based ionic liquid/water mixtures. Bioresource Technology, 274, 120–126.

    Article  CAS  Google Scholar 

  32. Molino, A., Rimauro, J., Casella, P., Cerbone, A., Larocca, V., Chianese, S., Karatza, D., Mehariya, S., Ferraro, A., Hristoforou, E., & Musmarra, D. (2018). Extraction of astaxanthin from microalga Haematococcus pluvualis in red phase by using generally recognized as safe solvents and accelerated extraction. Journal of Biotechnology, 283, 51–61.

    Article  CAS  Google Scholar 

  33. Kruber, K. F., Krapoth, M., & Zeiner, T. (2017). Interfacial mass transfer in ternary liquid-liquid systems. Fluid Phase Equilibria, 440, 54–63.

    Article  CAS  Google Scholar 

  34. Ernawati, L., Balgis, R., Ogi, T., Okuyama, K., & Takada, T. (2017). Role of acetone in the formation of highly dispersed cationic polystyrene nanoparticles. Chemical and Process Engineering, 38, 5–18.

    Article  CAS  Google Scholar 

  35. Acosta-Esquijarosa, J., Rodriquez-Donis, I., & Pardillo-Fontdevila, E. (2006). Physical properties and their corresponding changes of mixing for the ternary mixture acetone+n-hexane+water at 298.15K. Thermochimica Acta, 443, 93–97.

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the Global Infrastructure Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (No. NRF-2018K1A3A1A61024274) and also was supported by the Energy Efficiency and Resources R&D project through the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Knowledge Economy (MKE) of Korea (No. 20152010201900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Yeon Park.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Informed consent was obtained from all participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, JY., Oh, YK., Choi, SA. et al. Recovery of Astaxanthin-Containing Oil from Haematococcus pluvialis by Nano-dispersion and Oil Partitioning. Appl Biochem Biotechnol 190, 1304–1318 (2020). https://doi.org/10.1007/s12010-019-03167-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03167-y

Keywords

Navigation