Skip to main content

Advertisement

Log in

The Effect of Ionic Liquid Pretreatment on the Bioconversion of Tomato Processing Waste to Fermentable Sugars and Biogas

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Tomato pomace is an abundant lignocellulosic waste stream from industrial tomato processing and therefore a potential feedstock for production of renewable biofuels. However, little research has been conducted to determine if pretreatment can enhance release of fermentable sugars from tomato pomace. Ionic liquids (ILs) are an emerging pretreatment technology for lignocellulosic biomass to increase enzymatic digestibility and biofuel yield while utilizing recyclable chemicals with low toxicity. In this study, pretreatment of tomato pomace with the ionic liquid 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]) was investigated. Changes in pomace enzymatic digestibility were affected by pretreatment time and temperature. Certain pretreatment conditions significantly improved reducing sugar yield and hydrolysis time compared to untreated pomace. Compositional analyses suggested that pretreatment primarily removed water-soluble compounds and enriched for lignocellulose in pomace, with only subtle changes to the composition of the lignocellulose. While tomato pomace was effectively pretreated with [C2mim][OAc] to improve enzymatic digestibility, as of yet, unknown factors in the pomace caused ionic liquid pretreatment to negatively affect anaerobic digestion of pretreated material. This result, which is unique compared to similar studies on IL pretreatment of grasses and woody biomass, highlights the need for additional research to determine how the unique chemical composition of tomato pomace and other lignocellulosic fruit residues may interact with ionic liquids to generate inhibitors for downstream fermentation to biofuels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Brandt, A., Gräsvik, J., Hallett, J., & Welton, T. (2013). Deconstruction of lignocellulosic biomass with ionic liquids. Green Chemistry, 15, 550–583.

    Article  CAS  Google Scholar 

  2. Dadi, A. P., Varanasi, S., & Schall, C. A. (2006). Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnology and Bioengineering, 95, 904–910.

    Article  CAS  Google Scholar 

  3. Gao, J., Chen, L., Yan, Z., & Wang, L. (2013). Effect of ionic liquid pretreatment on the composition, structure and biogas production of water hyacinth (Eichhornia crassipes). Bioresource Technology, 132, 361–364.

    Article  CAS  Google Scholar 

  4. Haykir, N. I., Bahcegul, E., Bicak, N., & Bakir, U. (2013). Pretreatment of cotton stalk with ionic liquids including 2-hydroxy ethyl ammonium formate to enhance biomass digestibility. Industrial Crops and Products, 41, 430–436.

    Article  CAS  Google Scholar 

  5. Zhao, H., Baker, G. A., & Cowins, J. V. (2010). Fast enzymatic saccharification of switchgrass after pretreatment with ionic liquids. Biotechnology Progress, 26, 127–133.

    CAS  Google Scholar 

  6. Li, C., Knierim, B., Manisseri, C., Arora, R., Scheller, H. V., Auer, M., Vogel, K. P., Simmons, B. A., & Singh, S. (2010). Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification. Bioresource Technology, 101, 4900–4906.

    Article  CAS  Google Scholar 

  7. Li, C., Sun, L., Simmons, B., & Singh, S. (2013). Comparing the recalcitrance of eucalyptus, pine, and switchgrass using ionic liquid and dilute acid pretreatments. Bioenergy Research, 6, 14–23.

    Article  Google Scholar 

  8. Li, Q., Jiang, X., He, Y., Li, L., Xian, M., & Yang, J. (2010). Evaluation of the biocompatibile ionic liquid 1-methyl-3-methylimidazolium dimethylphosphite pretreatment of corn cob for improved saccharification. Applied Microbiology and Biotechnology, 87, 117–126.

    Article  CAS  Google Scholar 

  9. Fu, D., & Mazza, G. (2011). Optimization of processing conditions for the pretreatment of wheat straw using aqueous ionic liquid. Bioresource Technology, 102, 8003–8010.

    Article  CAS  Google Scholar 

  10. Katinonkul, W., Lee, J.-S., Ha, S. H., & Park, J.-Y. (2012). Enhancement of enzymatic digestibility of oil palm empty fruit bunch by ionic-liquid pretreatment. Energy, 47, 11–16.

    Article  CAS  Google Scholar 

  11. Feng, X., Wang, H., Wang, Y., Wang, X., & Huang, J. (2010). Biohydrogen production from apple pomace by anaerobic fermentation with river sludge. International Journal of Hydrogen Energy, 35, 3058–3064.

    Article  CAS  Google Scholar 

  12. Wang, H., Wang, J., Fang, Z., Wang, X., & Bu, H. (2010). Enhanced bio-hydrogen production by anaerobic fermentation of apple pomace with enzyme hydrolysis. International Journal of Hydrogen Energy, 35, 8303–8309.

    Article  CAS  Google Scholar 

  13. Fernandes Maria, C., Torrado, I., Carvalheiro, F., Dores, V., Guerra, V., Lourenço Pedro, M. L. and Duarte Luís, C. (2016). Bioethanol production from extracted olive pomace: dilute acid hydrolysis. Bioethanol, 2.

  14. Zheng, Y., Lee, C., Yu, C., Cheng, Y.-S., Simmons, C. W., Zhang, R., Jenkins, B. M., & VanderGheynst, J. S. (2012). Ensilage and bioconversion of grape pomace into fuel ethanol. Journal of Agricultural and Food Chemistry, 60, 11128–11134.

    Article  CAS  Google Scholar 

  15. Barrios-Masias, F. H., & Jackson, L. E. (2014). California processing tomatoes: morphological, physiological and phenological traits associated with crop improvement during the last 80 years. European Journal of Agronomy, 53, 45–55.

    Article  Google Scholar 

  16. Matteson, G. C., & Jenkins, B. M. (2007). Food and processing residues in California: resource assessment and potential for power generation. Bioresource Technology, 98, 3098–3105.

    Article  CAS  Google Scholar 

  17. Al-Wandawi, H., Abdul-Rahman, M., & Al-Shaikhly, K. (1985). Tomato processing wastes as essential raw materials source. Journal of Agricultural and Food Chemistry, 33, 804–807.

    Article  CAS  Google Scholar 

  18. Torr, K. M., Love, K. T., Çetinkol, Ö. P., Donaldson, L. A., George, A., Holmes, B. M., & Simmons, B. A. (2012). The impact of ionic liquid pretreatment on the chemistry and enzymatic digestibility of Pinus radiata compression wood. Green Chemistry, 14, 778–787.

    Article  CAS  Google Scholar 

  19. Sun, N., Rahman, M., Qin, Y., Maxim, M. L., Rodríguez, H., & Rogers, R. D. (2009). Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chemistry, 11, 646–655.

    Article  CAS  Google Scholar 

  20. Qiu, Z., Aita, G. M., & Walker, M. S. (2012). Effect of ionic liquid pretreatment on the chemical composition, structure and enzymatic hydrolysis of energy cane bagasse. Bioresource Technology, 117, 251–256.

    Article  CAS  Google Scholar 

  21. Shafiei, M., Zilouei, H., Zamani, A., Taherzadeh, M. J., & Karimi, K. (2013). Enhancement of ethanol production from spruce wood chips by ionic liquid pretreatment. Applied Energy, 102, 163–169.

    Article  CAS  Google Scholar 

  22. da Costa Lopes, A., Joao, K., Morais, A. R., Bogel-Lukasik, E., & Bogel-Lukasik, R. (2013). Ionic liquids as a tool for lignocellulosic biomass fractionation. Sustainable Chemical Processes, 1, 3.

    Article  Google Scholar 

  23. Gutowski, K. E., Broker, G. A., Willauer, H. D., Huddleston, J. G., Swatloski, R. P., Holbrey, J. D., & Rogers, R. D. (2003). Controlling the aqueous miscibility of ionic liquids: aqueous biphasic systems of water-miscible ionic liquids and water-structuring salts for recycle, metathesis, and separations. Journal of the American Chemical Society, 125, 6632–6633.

    Article  CAS  Google Scholar 

  24. Van Soest, P. J. (1973). Collaborative study of acid-detergent fiber and lignin. Journal of the American Oil Chemists’ Society, 56, 781–784.

    Google Scholar 

  25. Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74, 3583–3597.

    Article  Google Scholar 

  26. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C. and Sluiter, J. (2012). Determination of structural carbohydrates and lignin in biomass. Laboratory Analytical Procedures (LAP), National Renewable Energy Laboratory (NREL), Golden, CO. Revised version Jul 2011.

  27. Gancedo, M. C., & Luh, B. S. (1986). HPLC analysis of organic acids and sugars in tomato juice. Journal of Food Science, 51, 571–573.

    Article  CAS  Google Scholar 

  28. Li, Q., He, Y.-C., Xian, M., Jun, G., Xu, X., Yang, J.-M., & Li, L.-Z. (2009). Improving enzymatic hydrolysis of wheat straw using ionic liquid 1-ethyl-3-methyl imidazolium diethyl phosphate pretreatment. Bioresource Technology, 100, 3570–3575.

    Article  CAS  Google Scholar 

  29. Avelino, A., Avelino, H. T., Roseiro, J. C., & Collaço, M. T. A. (1997). Saccharification of tomato pomace for the production of biomass. Bioresource Technology, 61, 159–162.

    Article  CAS  Google Scholar 

  30. Haddadin, M. S. Y., Abu-Reesh, I. M., Haddadin, F. A. S., & Robinson, R. K. (2001). Utilisation of tomato pomace as a substrate for the production of vitamin B12—a preliminary appraisal. Bioresource Technology, 78, 225–230.

    Article  CAS  Google Scholar 

  31. Li, B., Asikkala, J., Filpponen, I., & Argyropoulos, D. S. (2010). Factors affecting wood dissolution and regeneration of ionic liquids. Industrial & Engineering Chemistry Research, 49, 2477–2484.

    Article  CAS  Google Scholar 

  32. Shill, K., Padmanabhan, S., Xin, Q., Prausnitz, J. M., Clark, D. S., & Blanch, H. W. (2011). Ionic liquid pretreatment of cellulosic biomass: enzymatic hydrolysis and ionic liquid recycle. Biotechnology and Bioengineering, 108, 511–520.

    Article  CAS  Google Scholar 

  33. Doherty, T. V., Mora-Pale, M., Foley, S. E., Linhardt, R. J., & Dordick, J. S. (2010). Ionic liquid solvent properties as predictors of lignocellulose pretreatment efficacy. Green Chemistry, 12, 1967–1975.

    Article  CAS  Google Scholar 

  34. Klein-Marcuschamer, D., Simmons, B. A., & Blanch, H. W. (2011). Techno-economic analysis of a lignocellulosic ethanol biorefinery with ionic liquid pre-treatment. Biofuels, Bioproducts and Biorefining, 5, 562–569.

    Article  CAS  Google Scholar 

  35. Del Valle, M., Cámara, M., & Torija, M.-E. (2006). Chemical characterization of tomato pomace. Journal of the Science of Food and Agriculture, 86, 1232–1236.

    Article  Google Scholar 

  36. Lazos, E. S., & Kalathenos, P. (1988). Technical note: composition of tomato processing wastes. International Journal of Food Science and Technology, 23, 649–652.

    Article  Google Scholar 

  37. Lenucci, M. S., Durante, M., Anna, M., Dalessandro, G., & Piro, G. (2013). Possible use of the carbohydrates present in tomato pomace and in byproducts of the supercritical carbon dioxide lycopene extraction process as biomass for bioethanol production. Journal of Agricultural and Food Chemistry, 61, 3683–3692.

    Article  CAS  Google Scholar 

  38. Lee, S. H., Doherty, T. V., Linhardt, R. J., & Dordick, J. S. (2009). Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnology and Bioengineering, 102, 1368–1376.

    Article  CAS  Google Scholar 

  39. da Costa Lopes, A. M., João, K. G., Rubik, D. F., Bogel-Łukasik, E., Duarte, L. C., Andreaus, J., & Bogel-Łukasik, R. (2013). Pre-treatment of lignocellulosic biomass using ionic liquids: wheat straw fractionation. Bioresource Technology, 142, 198–208.

    Article  Google Scholar 

  40. Fu, D., Mazza, G., & Tamaki, Y. (2010). Lignin extraction from straw by ionic liquids and enzymatic hydrolysis of the cellulosic residues. Journal of Agricultural and Food Chemistry, 58, 2915–2922.

    Article  CAS  Google Scholar 

  41. Magalhaes da Silva, S. P., da Costa Lopes, A. M., Roseiro, L. B., & Bogel-Lukasik, R. (2013). Novel pre-treatment and fractionation method for lignocellulosic biomass using ionic liquids. RSC Advances, 3, 16040–16050.

    Article  CAS  Google Scholar 

  42. Saravanan, R. S., & Rose, J. K. C. (2004). A critical evaluation of sample extraction techniques for enhanced proteomic analysis of recalcitrant plant tissues. PROTEOMICS, 4, 2522–2532.

    Article  CAS  Google Scholar 

  43. Sogi, D. S., Arora, M. S., Garg, S. K., & Bawa, A. S. (2002). Fractionation and electrophoresis of tomato waste seed proteins. Food Chemistry, 76, 449–454.

    Article  CAS  Google Scholar 

  44. Gao, J., Chen, L., Yuan, K., Huang, H., & Yan, Z. (2013). Ionic liquid pretreatment to enhance the anaerobic digestion of lignocellulosic biomass. Bioresource Technology, 150, 352–358.

    Article  CAS  Google Scholar 

  45. Benzing-Purdie, L. M., Ripmeester, J. A., & Ratcliffe, C. I. (1985). Effects of temperature on Maillard reaction products. Journal of Agricultural and Food Chemistry, 33, 31–33.

    Article  CAS  Google Scholar 

  46. Einarsson, H., Snygg, B. G., & Eriksson, C. (1983). Inhibition of bacterial growth by Maillard reaction products. Journal of Agricultural and Food Chemistry, 31, 1043–1047.

    Article  CAS  Google Scholar 

  47. Stecchini, M. L., Giavedoni, P., Sarais, I., & Lerici, C. R. (1991). Effect of Maillard reaction products on the growth of selected food-poisoning micro-organisms. Letters in Applied Microbiology, 13, 93–96.

    Article  Google Scholar 

  48. Frankel, E. N. (1984). Lipid oxidation: mechanisms, products and biological significance. J Am Oil Chem Soc, 61, 1908–1917.

    Article  CAS  Google Scholar 

  49. Novak, A. F., Solar, J. M., Mod, R. R., Magne, F. C., & Skau, E. L. (1969). Antimicrobial activity of some N-substituted amides of long-chain fatty acids. Applied Microbiology, 18, 1050–1056.

    CAS  Google Scholar 

  50. Nawar, W. W. (1969). Thermal degradation of lipids. Journal of Agricultural and Food Chemistry, 17, 18–21.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Campbell Soup Company for providing tomato pomace samples. This work was supported by the New Research Initiatives and Collaborative Interdisciplinary Research Grants program provided by the University of California, Davis Academic Senate Committee on Research and by the National Institute of Food and Agriculture (project number CA-D-FST-2236-RR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher W. Simmons.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure Supplementary Figure 1

Representative plots of empirical data describing release of reducing sugars during enzymatic hydrolysis of pomace pretreated using different conditions and a washed pomace control (shapes) and corresponding fitted non-linear regression models (dashed lines) are given for select samples across the design space to indicate the goodness of fit. (PNG 139 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allison, B.J., Cádiz, J.C., Karuna, N. et al. The Effect of Ionic Liquid Pretreatment on the Bioconversion of Tomato Processing Waste to Fermentable Sugars and Biogas. Appl Biochem Biotechnol 179, 1227–1247 (2016). https://doi.org/10.1007/s12010-016-2061-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2061-4

Keywords

Navigation