Skip to main content
Log in

Assessment of Green Processes for Tomato Waste Biovalorization: Spotlight on the Innovative Pulsed Electric Field–Laccase Synergy for Enhanced Sugar and Phenol Extraction Yields

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Tomato waste (TW) is a plentiful lignocellulosic resource, mainly composed of seeds and skins, that can be converted into high-value compounds. This study explored the enhancement of TW enzymatic and fungal biovalorization using novel ecofriendly approaches, including advanced technology, pulsed electric fields (PEF). Crude laccase first produced on TW was used for enzymatic treatment, and the white rot fungus Trametes versicolor K1 was used in fungal treatment under SmF (submerged) or SSF (semi-solid) fermentation conditions. The physical PEF treatment had increased tenfold sugar extraction yield (83.4 mg/g) and twofold polyphenol extraction yield (4.43 g/g), with respect to the control. PEF–laccase innovative combination, reported for the first time, has enhanced significantly sugar extraction yield (100.6 mg/g), twofold higher than those released from TW after laccase treatment alone. However, the PEF treatment had no effect on polyphenol extraction yield when combined to laccase or fungal treatments. The treated TW was subjected to polysaccharide enzymatic hydrolysis. The combination of PEF with laccase or fungal treatment did not impact sugar yields; however, it allowed polyphenol liberation. During fungal treatment (i.e., T. versicolor K1 grown on TW), comparable maximal laccase activities of 2574.28 U/L and 2577.06 U/L were measured in the culture supernatants, in SmF and SSF conditions, respectively. The findings demonstrate the high potential of PEF for recovering phenols and sugars. When combined to fungal treatment, it offers high yields of valuable products, making it a potential cost-effective approach, providing new prospects for TW valorization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Trombino S, Cassano R, Procopio D, Di Gioia ML, Barone E (2021) Valorization of tomato waste as a source of carotenoids. Molecules 26:5062. https://doi.org/10.3390/molecules26165062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hoang AT, Ong HC, Fattah IMR, Chong CT, Cheng CK, Sakthivel R et al (2021) Progress on the lignocellulosic biomass pyrolysis for biofuel production toward environmental sustainability. Fuel Process Technol 223:106997. https://doi.org/10.1016/j.fuproc.2021.106997

    Article  CAS  Google Scholar 

  3. Sharma A, Jain KK, Srivastava A, Shrivastava B, Thakur VV, Jain RK et al (2019) Potential of in situ SSF laccase produced from Ganoderma lucidum RCK 2011 in biobleaching of paper pulp. Bioprocess Biosyst Eng 42:367–377. https://doi.org/10.1007/s00449-018-2041-x

    Article  CAS  PubMed  Google Scholar 

  4. Atilano-Camino MM, Álvarez-Valencia LH, García-González A, García-Reyes RB (2020) Improving laccase production from Trametes versicolor using lignocellulosic residues as cosubstrates and evaluation of enzymes for blue wastewater biodegradation. J Environ Manage 275:111231. https://doi.org/10.1016/j.jenvman.2020.111231

    Article  CAS  PubMed  Google Scholar 

  5. Litwińska K, Bischoff F, Matthes F, Bode R, Rutten T, Kunze G (2019) Characterization of recombinant laccase from Trametes versicolor synthesized by Arxula adeninivorans and its application in the degradation of pharmaceuticals. AMB Express 9:102. https://doi.org/10.1186/s13568-019-0832-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang X, Xu C, Wang H (2007) Pretreatment of bamboo residues with Coriolus versicolor for enzymatic hydrolysis. J Biosci Bioeng 104:149–151. https://doi.org/10.1263/jbb.104.149

    Article  CAS  PubMed  Google Scholar 

  7. Itoh H, Wada M, Honda Y, Kuwahara M, Watanabe T (2003) Bioorganosolve pretreatments for simultaneous saccharification and fermentation of beech wood by ethanolysis and white rot fungi. J Biotechnol 103:273–280. https://doi.org/10.1016/s0168-1656(03)00123-8

    Article  CAS  PubMed  Google Scholar 

  8. Huang C, Lai C, Zeng G, Huang D, Xu P, Zhang C et al (2017) Manganese-enhanced degradation of lignocellulosic waste by Phanerochaete chrysosporium: evidence of enzyme activity and gene transcription. Appl Microbiol Biotechnol 101:6541–6549. https://doi.org/10.1007/s00253-017-8371-9

    Article  CAS  PubMed  Google Scholar 

  9. Luengo E, Martínez JM, Coustets M, Álvarez I, Teissié J, Rols M-P et al (2015) A comparative study on the effects of millisecond- and microsecond-pulsed electric field treatments on the permeabilization and extraction of pigments from Chlorella vulgaris. J Membr Biol 248:883–891. https://doi.org/10.1007/s00232-015-9796-7

    Article  CAS  PubMed  Google Scholar 

  10. Puértolas E, Cregenzán O, Luengo E, Álvarez I, Raso J (2013) Pulsed-electric-field-assisted extraction of anthocyanins from purple-fleshed potato. Food Chem 136:1330–1336. https://doi.org/10.1016/j.foodchem.2012.09.080

    Article  CAS  PubMed  Google Scholar 

  11. Salgado-Ramos M, Martí-Quijal FJ, Huertas-Alonso AJ, Sánchez-Verdú MP, Barba FJ, Moreno A (2022) Almond hull biomass: preliminary characterization and development of two alternative valorization routes by applying innovative and sustainable technologies. Ind Crops Prod 179:114697. https://doi.org/10.1016/j.indcrop.2022.114697

    Article  CAS  Google Scholar 

  12. Salgado-Ramos M, Martí-Quijal FJ, Huertas-Alonso AJ, Sánchez-Verdú MP, Moreno A, Barba FJ (2023) A preliminary multistep combination of pulsed electric fields and supercritical fluid extraction to recover bioactive glycosylated and lipidic compounds from exhausted grape marc. LWT 180:114725. https://doi.org/10.1016/j.lwt.2023.114725

    Article  CAS  Google Scholar 

  13. Salgado-Ramos M, Martí-Quijal FJ, Huertas-Alonso AJ, Sánchez-Verdú MP, Moreno A, Barba FJ (2023) Winemaking-derived by-products: in-depth characterization and sustainable, advanced pulsed electric field (PEF) processing to a zero-waste-based approach. J Environ Chem Eng 11:110535. https://doi.org/10.1016/j.jece.2023.110535

    Article  CAS  Google Scholar 

  14. Chaoua S, Chaouche NK, Songulashvili G, Gares M, Hiligsmann S, Flahaut S (2022) Yellow laccase produced by Trametes versicolor K1 on tomato waste: a comparative study with the blue one produced on semi-synthetic medium. J Biotechnol 361:99–109. https://doi.org/10.1016/j.jbiotec.2022.12.001

    Article  CAS  PubMed  Google Scholar 

  15. Andreou V, Dimopoulos G, Dermesonlouoglou E, Taoukis P (2020) Application of pulsed electric fields to improve product yield and waste valorization in industrial tomato processing. J Food Eng 270:109778. https://doi.org/10.1016/j.jfoodeng.2019.109778

    Article  CAS  Google Scholar 

  16. Leite P, Silva C, Salgado JM, Belo I (2019) Simultaneous production of lignocellulolytic enzymes and extraction of antioxidant compounds by solid-state fermentation of agro-industrial wastes. Ind Crops Prod 137:315–322. https://doi.org/10.1016/j.indcrop.2019.04.044

    Article  CAS  Google Scholar 

  17. Deng Z, Xia A, Liao Q, Zhu X, Huang Y, Fu Q (2019) Laccase pretreatment of wheat straw: effects of the physicochemical characteristics and the kinetics of enzymatic hydrolysis. Biotechnol Biofuels 12:159. https://doi.org/10.1186/s13068-019-1499-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Freitas EN de, Alnoch RC, Contato AG, Nogueira KMV, Crevelin EJ, Moraes LAB de, et al (2021) Enzymatic pretreatment with laccases from Lentinus sajor-caju induces structural modification in lignin and enhances the digestibility of tropical forage grass (Panicum maximum) grown under future climate conditions. Int J Mol Sci 22:9445. https://doi.org/10.3390/ijms22179445.

  19. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. https://doi.org/10.1021/ac60147a030

  20. Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144–158. https://doi.org/10.5344/ajev.1965.16.3.144

    Article  CAS  Google Scholar 

  21. Almohammed F, Mhemdi H, Vorobiev E (2016) Pulsed electric field treatment of sugar beet tails as a sustainable feedstock for bioethanol production. Appl Energy 162:49–57. https://doi.org/10.1016/j.apenergy.2015.10.050

    Article  CAS  Google Scholar 

  22. Eshtiaghi MN, Yoswathana N (2012) Laboratory scale extraction of sugar cane using high electric field pulses. Int J Chem Mol Eng 6:503–508

    Google Scholar 

  23. Rybak K, Wiktor A, Witrowa-Rajchert D, Parniakov O, Nowacka M (2020) The effect of traditional and non-thermal treatments on the bioactive compounds and sugars content of red bell pepper. Molecules 25:4287. https://doi.org/10.3390/molecules25184287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kumari B, Tiwari BK, Walsh D, Griffin TP, Islam N, Lyng JG et al (2019) Impact of pulsed electric field pre-treatment on nutritional and polyphenolic contents and bioactivities of light and dark brewer’s spent grains. Innov Food Sci Emerg Technol 54:200–210. https://doi.org/10.1016/j.ifset.2019.04.012

    Article  CAS  Google Scholar 

  25. Eshtiaghi MN, Knorr D (2002) High electric field pulse pretreatment: potential for sugar beet processing. J Food Eng 52:265–272. https://doi.org/10.1016/S0260-8774(01)00114-5

    Article  Google Scholar 

  26. El Achkar JH, Lendormi T, Salameh D, Louka N, Maroun RG, Lanoisellé J-L et al (2018) Influence of pretreatment conditions on lignocellulosic fractions and methane production from grape pomace. Bioresour Technol 247:881–889. https://doi.org/10.1016/j.biortech.2017.09.182

    Article  CAS  PubMed  Google Scholar 

  27. Kovačić Đ, Rupčić S, Kralik D, Jovičić D, Spajić R, Tišma M (2021) Pulsed electric field: An emerging pretreatment technology in a biogas production. Waste Manag 120:467–483. https://doi.org/10.1016/j.wasman.2020.10.009

    Article  CAS  PubMed  Google Scholar 

  28. Sidana A, Yadav SK (2022) Recent developments in lignocellulosic biomass pretreatment with a focus on eco-friendly, non-conventional methods. J Clean Prod 335:130286. https://doi.org/10.1016/j.jclepro.2021.130286

    Article  CAS  Google Scholar 

  29. Gonzali S, Mazzucato A, Perata P (2019) Purple as a tomato: towards high anthocyanin tomatoes. Trends Plant Sci 14:237–241. https://doi.org/10.1016/j.tplants.2009.02.001

    Article  CAS  Google Scholar 

  30. Pataro G, Ferrari G, Donsì F (2011) Mass transfer enhancement by means of electroporation. Mass Transfer Chem Eng Processes:151–176. https://doi.org/10.5772/22386

  31. Ong VZ, Wu TY, Lee CBTL, Cheong NWR, Shak KPY (2019) Sequential ultrasonication and deep eutectic solvent pretreatment to remove lignin and recover xylose from oil palm fronds. Ultrason Sonochem 58:104598. https://doi.org/10.1016/j.ultsonch.2019.05.015

    Article  CAS  PubMed  Google Scholar 

  32. Rencoret J, Pereira A, del Río JC, Martínez ÁT, Gutiérrez A (2017) Delignification and saccharification enhancement of sugarcane byproducts by a laccase-based pretreatment. ACS Sustain Chem Eng 5:7145–7154. https://doi.org/10.1021/acssuschemeng.7b01332

    Article  CAS  Google Scholar 

  33. Zhang R, Lv C, Lu J (2020) Studies on laccase mediated conversion of lignin from ginseng residues for the production of sugars. Bioresour Technol 317:123945. https://doi.org/10.1016/j.biortech.2020.123945

    Article  CAS  PubMed  Google Scholar 

  34. Yu H, Li X, Xing Y, Liu Z, Jiang J (2014) A sequential combination of laccase pretreatment and enzymatic hydrolysis for glucose production from furfural residues. BioResources 9:4581–4595

    Article  Google Scholar 

  35. Giacobbe S, Pezzella C, Lettera V, Sannia G, Piscitelli A (2018) Laccase pretreatment for agrofood wastes valorization. Bioresour Technol 265:59–65. https://doi.org/10.1016/j.biortech.2018.05.108

    Article  CAS  PubMed  Google Scholar 

  36. Hilgers R, van Dam A, Zuilhof H, Vincken J-P, Kabel MA (2020) Controlling the competition: boosting laccase/HBT-catalyzed cleavage of a β-O-4′ linked lignin model. ACS Catal 10:8650–8659. https://doi.org/10.1021/acscatal.0c02154

    Article  CAS  Google Scholar 

  37. Han M-L, Bian L-S, Zhang Y, Zhu M, An Q (2021) Pseudolagarobasidium baiyunshanense sp. nov. from China inferred from morphological and sequence analyses. Phytotaxa 483:169–176. https://doi.org/10.11646/phytotaxa.483.2.9

    Article  Google Scholar 

  38. Palazzolo MA, Postemsky PD, Kurina-Sanz M (2019) From agro-waste to tool: biotechnological characterization and application of Ganoderma lucidum E47 laccase in dye decolorization. 3 Biotech 9:213. https://doi.org/10.1007/s13205-019-1744-2

    Article  PubMed  PubMed Central  Google Scholar 

  39. Singhania RR, Patel AK, Soccol CR, Pandey A (2009) Recent advances in solid-state fermentation. Biochem Eng J 44:13–18. https://doi.org/10.1016/j.bej.2008.10.019

    Article  CAS  Google Scholar 

  40. Wang F, Xu L, Zhao L, Ding Z, Ma H, Terry N (2019) Fungal laccase production from lignocellulosic agricultural wastes by solid-state fermentation: a review. Microorganisms 7:665. https://doi.org/10.3390/microorganisms7120665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Xu L, Sun K, Wang F, Zhao L, Hu J, Ma H et al (2020) Laccase production by Trametes versicolor in solid-state fermentation using tea residues as substrate and its application in dye decolorization. J Environ Manage 270:110904. https://doi.org/10.1016/j.jenvman.2020.110904

    Article  CAS  PubMed  Google Scholar 

  42. Robin A, Sack M, Israel A, Frey W, Müller G, Golberg A (2018) Deashing macroalgae biomass by pulsed electric field treatment. Bioresour Technol 255:131–139. https://doi.org/10.1016/j.biortech.2018.01.089

    Article  CAS  PubMed  Google Scholar 

  43. Tengerdy RP (1985) Solid substrate fermentation. Trends Biotechnol Neth 3:4. https://doi.org/10.1016/0167-7799(85)90092-7

    Article  Google Scholar 

  44. do Rosário Freixo M, Karmali A, Arteiro JM (2012) Production, purification and characterization of laccase from Pleurotus ostreatus grown on tomato pomace. World J Microbiol Biotechnol 28:245–254. https://doi.org/10.1007/s11274-011-0813-4

    Article  CAS  Google Scholar 

  45. do Rosario Freixo M, Karmali A, Frazão C, Arteiro JM (2008) Production of laccase and xylanase from Coriolus versicolor grown on tomato pomace and their chromatographic behaviour on immobilized metal chelates. Process Biochem 43:1265–1274. https://doi.org/10.1016/j.procbio.2008.07.013

    Article  CAS  Google Scholar 

  46. Iandolo D, Piscitelli A, Sannia G, Faraco V (2011) Enzyme production by solid substrate fermentation of Pleurotus ostreatus and Trametes versicolor on tomato pomace. Appl Biochem Biotechnol 163:40–51. https://doi.org/10.1007/s12010-010-9014-0

    Article  CAS  PubMed  Google Scholar 

  47. Pinto PA, Dias AA, Fraga I, Marques G, Rodrigues MAM, Colaço J et al (2012) Influence of ligninolytic enzymes on straw saccharification during fungal pretreatment. Bioresour Technol 111:261–267. https://doi.org/10.1016/j.biortech.2012.02.068

    Article  CAS  PubMed  Google Scholar 

  48. Oliva-Taravilla A, Tomás-Pejó E, Demuez M, González-Fernández C, Ballesteros M (2016) Phenols and lignin: key players in reducing enzymatic hydrolysis yields of steam-pretreated biomass in presence of laccase. J Biotechnol 218:94–101. https://doi.org/10.1016/j.jbiotec.2015.11.004

    Article  CAS  PubMed  Google Scholar 

  49. González-Bautista E, Santana-Morales JC, Ríos-Fránquez FJ, Poggi-Varaldo HM, Ramos-Valdivia AC, Cristiani-Urbina E et al (2017) Phenolic compounds inhibit cellulase and xylanase activities of Cellulomonas flavigena PR-22 during saccharification of sugarcane bagasse. Fuel 196:32–35. https://doi.org/10.1016/j.fuel.2017.01.080

    Article  CAS  Google Scholar 

  50. Kumar V, Patel SKS, Gupta RK, Otari SV, Gao H, Lee J et al (2019) Enhanced saccharification and fermentation of rice straw by reducing the concentration of phenolic compounds using an immobilized enzyme cocktail. Biotechnol J 14:1800468. https://doi.org/10.1002/biot.201800468

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for the assistance of all the staff of CELABOR Research Center (Herve-Belgium). We would also like to thank all the staff of LABIRIS Research Institute (Brussels-Belgium) for collaboration. We are grateful to Wallonie-Bruxelles International (WBI) for financial support.

Funding

This work was supported by Wallonie-Bruxelles International (grant number 96365).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samah Chaoua.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaoua, S., Flahaut, S., Hiligsmann, S. et al. Assessment of Green Processes for Tomato Waste Biovalorization: Spotlight on the Innovative Pulsed Electric Field–Laccase Synergy for Enhanced Sugar and Phenol Extraction Yields. Bioenerg. Res. (2023). https://doi.org/10.1007/s12155-023-10708-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12155-023-10708-1

Keywords

Navigation