Skip to main content

Advertisement

Log in

Shoot organogenesis from root-derived callus of Rhinacanthus nasutus (L.) Kurz. and assessment of clonal fidelity of micropropagted plants using RAPD analysis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

An efficient regeneration system was established for an ethnomedicinal shrub Rhinacanthus nasutus from root-derived callus organogenesis. The root segments were cultured on MS medium supplemented with various concentrations of Kn (1.0–4.0 μM) alone or in combination with IBA (0.2–0.6 μM) or 2, 4-D (0.5–1.5 μM). The optimum frequency (94 %) of callus induction was recorded on MS medium supplemented with 3.0 μM Kn and 0.4 μM IBA. For shoot regeneration from callus, MS medium supplemented with different concentrations (1.0–7.0 μM) of BA or TDZ alone or in combination with NAA (0.2–1.0 μm) was employed. The highest frequency of shoot regeneration (91 %) and mean number of shoots (28.3) were observed on MS medium supplemented with 5.0 μM BA and 0.7 μM NAA. The shoots were excised and cultured on MS medium with 4.0 μM IBA produced 3.4 roots per shoot in 88 % cultures. Of the 65 plants transferred to soil 54 survived (83 %). The plants were transferred to field after successful hardening. RAPD analysis of the regenerated plants showed high similarity with the mother plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

BA:

6-Benzyladenine

2, 4-D:

2, 4 dichlorophenoxy acetic acid

IBA:

Indole-3-butyric acid

Kn:

Kinetin

MS:

Murashige and Skoog

NAA:

α-naphthalene acetic acid

RAPD:

Random amplified polymorphic DNA

TDZ:

Thidiazuron

References

  1. Atsusi, K., & Yoshioki, H. (1993). Journal of Natural Products, 56, 292–294.

    Article  Google Scholar 

  2. Wu, T. S., Hsu, H. C., Wu, P. L., Teng, C. H., & Wu, Y. C. (1998). Phytochemistry, 49, 2001–2003.

    Article  CAS  Google Scholar 

  3. Warrier, P. K., Nambiar, V. P. K., & Ramankutty, C. (1995). Indian medicinal plants—a compendium of 500 species (pp. 417–424). Vol 4. Orient Longmans India.

  4. Chopra, R. N., Nayar, S. L., & Chopra, I. C. (1956). Glossary of Indian medicinal plants (p. 212). New Delhi: Council of Scientific and Industrial Research.

    Google Scholar 

  5. Sendl, A., Chen, J. L., Jolad, S. D., Stoddart, C., Rozhon, E., & Kernan, M. (1996). Journal of Natural Products, 59, 808–811.

    Article  CAS  Google Scholar 

  6. Sattar, M. A., Abdullah, N. A., Khan, A. H., & Noor, A. M. (2004). Journal of Biological Science, 4, 498–500.

    Article  Google Scholar 

  7. Yoganarasimhan, S. N. (1996). Medicinal plants of India (Vol. 1). Bangalore: Interline Publishing Pvt. Ltd.

    Google Scholar 

  8. Muthukumarasamy, S., Mohan, V. R., Kumaresan, S., & Chelladurai, V. (2003). Journal of Economic and Taxonomic Botany, 27, 761–764.

    Google Scholar 

  9. Barnash, N. (2003). Journal of Biological Research, 4, 17–23.

    Google Scholar 

  10. Rao, P. V., & Naidu, M. D. (2010). Current Trends in Biotechnology and Pharmacy, 17, 323–327.

    Google Scholar 

  11. Wu, T. S., Tien, H. J., Yeh, M. Y., & Lee, K. H. (1998). Phytochemistry, 27, 3787–3788.

    Article  Google Scholar 

  12. Perry, L. M. (1980). Medicinal plants of East and Southeast Asia: attributed properties and uses (p. 5). Cambridge: MIT Press.

    Google Scholar 

  13. Alagesaboopathi, C. (2011). Asian Journal of Experimental and Biological Science, 2, 140–142.

    Google Scholar 

  14. Rao, M. U., Sreenivasulu, M., Chengaiah, B., Ravikrishna, D., Reddy, K. J., Sangeetha, K., & Madhusudhana Chetty, C. M. (2010). International Journal of Pharmaceutical Research and Development, 2, 1–8.

    CAS  Google Scholar 

  15. Siriwatanametanon, N., Fiebich, B. L., Efferth, T., Prieto, J. M., & Heinrich, J. M. (2010). Journal of Ethnopharmacology, 130, 196–207.

    Article  Google Scholar 

  16. Gotoh, A., Sakaeda, T., Kimura, T., Shirakawa, T., Wada, Y., & Wada, A. (2004). Biological and Pharmaceutical Bulletin, 27, 1070–1074.

    Article  CAS  Google Scholar 

  17. Puttarak, P., Charoonratana, T., & Panichayupakarananta, P. (2010). Phytomedicine, 17, 323–327.

    Article  CAS  Google Scholar 

  18. Rao, V., Sujana, P., Vijayakanth, T., & Naidu, D. M. (2012). Asian Pacific Journal of Tropical Disease, 12, 327–330.

    Article  Google Scholar 

  19. Kongkathip, N., Pradidphol, N., Hasitapan, K., Grigg, R., Kao, W. C., Hunte, C., Fisher, N., Warman, A. J., Biagini, G. A., Konsaeree, P., Chuawong, P., & Kongkathip, B. (2010). Journal of Medicinal Chemistry, 53, 1211–1221.

    Article  CAS  Google Scholar 

  20. Kongkathip, N., Kongkathip, B., Siripong, P., Sangma, C., Luangkamin, S., Niyomdecha, M., Pattanapa, S., Piyaviriyagul, S., & Kongsaeree, P. (2004). Journal of Medicinal Chemistry, 47, 4427–4438.

    Article  CAS  Google Scholar 

  21. Siripong, P., Kanokmedakul, K., Piyaviriyagul, S., Yahuafai, J., Chanpai, R., Ruchirawat, S., & Oku, N. (2006). Journal of Traditional Medicine, 23, 166–172.

    CAS  Google Scholar 

  22. Thirumurugan, R. S., Kavimani, S., & Srivastava, R. S. (2000). Biological and Pharmaceutical Bulletin, 23, 1438–1440.

    Article  CAS  Google Scholar 

  23. Rathore, M. S., Rathore, M. S., & Shekhawat, N. S. (2013). Environmental and Experimental Botany, 86, 86–93.

    Article  CAS  Google Scholar 

  24. Nguyen, Q. V., Sun, H. J., Boo, K. H., Lee, D., Lee, J. H., Lim, P. O., Lee, H. Y., Riu, K. Z., & Lee, D. S. (2013). Plant Biotechnology Reports, 7, 99–108.

    Article  Google Scholar 

  25. Cheruvathur, M. K., Abraham, J., & Thomas, T. D. (2013). Applied Biochemistry and Biotechnology, 169, 1799–1810.

    Article  CAS  Google Scholar 

  26. Phulwaria, M., Rai, M. K., & Shekhawat, N. S. (2013). Applied Biochemistry and Biotechnology, 170, 1163–1173.

    Article  CAS  Google Scholar 

  27. Cheruvathur, M. K., Sivu, A. R., Pradeep, N. S., & Thomas, T. D. (2012). Industrial Crops and Products, 40, 122–128.

    Article  CAS  Google Scholar 

  28. Cheruvathur, M. K., Kumar, K. G., & Thomas, T. D. (2013). Plant Cell Tissue Organ Culture, 113, 63–71.

    Article  CAS  Google Scholar 

  29. Murashige, T., & Skoog, F. (1962). Physiologia Plantarum, 15, 473–497.

    Article  CAS  Google Scholar 

  30. Duncan, D. B. (1955). Biometrics, 11, 1–42.

    Article  Google Scholar 

  31. Murray, M. G., Thompson, C. L., & Wendel, J. F. (1993). Nucleic Acid Research, 8, 4321–4326.

    Article  Google Scholar 

  32. Pant, M., Bisht, P., & Gusain, M. P. (2011). African Jouranl of Biotechnology, 11, 7408–7416.

    Google Scholar 

  33. Zheng, S. J., Henken, B., Krens, F. A., & Kik, C. (2003). In Vitro Cellular and Developmental Biology-Plant, 39, 288–292.

    Article  CAS  Google Scholar 

  34. Thomas, T. D., & Shankar, S. (2009). Plant Biotechnology Reports, 3, 67–74.

    Article  Google Scholar 

  35. Thomas, T. D., & Yoichiro, H. (2010). Acta Physiologia Plantarum, 32, 943–950.

    Article  Google Scholar 

  36. Nitnaware, K. M., Naik, D. G., & Nikam, T. D. (2011). Plant Cell, Tissue and Organ Culture, 104, 101–110.

    Article  CAS  Google Scholar 

  37. Bosela, M. J., & Michler, C. H. (2008). In Vitro Cellular and Developmental Biology-Plant, 44, 316–329.

    Article  CAS  Google Scholar 

  38. Wang, J., Liu, K., Xu, D., Wang, Q., Bi, K., Song, Y., Li, J., & Zhang, L. (2013). Plant Growth Regulation, 69, 305–310.

    Article  CAS  Google Scholar 

  39. Bhagya, N., Chandrashekar, K. R., Karun, A., & Bhavyashree, U. (2013). Journal of Plant Biochemistry and Biotechnology. doi:10.1007/s13562-012-0177-3.

    Google Scholar 

  40. Chavan, J. J., Gaikwad, N. B., Umdale, S. D., Kshirsagar, P. R., Bhat, K. V., & Yadav, S. R. (2013). Plant Growth Regulation. doi:10.1007/s10725-013-9830-7.

    Google Scholar 

  41. Jeyakumar, J. J., Kamaraj, M., & Thiruvengadam, M. (2013). Journal of Plant Biochemistry and Biotechnology. doi:10.1007/s13562-013-0215-9.

    Google Scholar 

  42. Swarna, J., & Ravindhran, R. (2013). Plant Growth Regulation, 70, 79–87.

    Article  CAS  Google Scholar 

  43. Parveen, S., Shahzad, A., & Saema, S. (2010). Agroforestry Systems, 80, 109–116.

    Article  Google Scholar 

  44. Thomas, T. D., & Yoichiro, H. (2011). Plant Biosystems, 145, 924–930.

    Article  Google Scholar 

  45. Sharada, M., Ahuja, A., Suri, K. A., Vij, S. P., Khajuria, R. K., Verma, V., & Kumar, A. (2007). Biologia Plantarum, 51, 161–164.

    Article  CAS  Google Scholar 

  46. Cheruvathur, M. K., & Thomas, T. D. (2011). Physiology and Molecular Biology of Plants, 17, 395–401.

    Article  CAS  Google Scholar 

  47. Shekhawat, M. S., & Shekhawat, N. S. (2011). Acta Physiologia Plantarum, 33, 1445–1450.

    Article  CAS  Google Scholar 

  48. Lakshmanan, V., Venkataramareddy, S. R., & Neelwarne, B. (2007). Electronic Journal of Biotechnology, 10, 1–8.

    Article  Google Scholar 

  49. Kaul, S., Das, S., & Srivastava, P. S. (2013). Physiology and Molecular Biology of Plants, 19, 289–296.

    Article  CAS  Google Scholar 

  50. Rawat, J. M., Rawat, B., Mehrotra, S., Chandra, A., & Nautiyal, S. (2013). Acta Physiologia Plantarum, 35, 1797–1805.

    Article  CAS  Google Scholar 

  51. Razaq, M., Heikrujam, M., Chetri, S. K., & Agrawal, V. (2013). Physiology and Molecular Biology of Plants, 19, 251–260.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

MKC is thankful to M.G. University, Kottayam, Kerala for the financial assistance in the form of University Junior Research Fellowship and Principal, St. Thomas College, Pala for providing lab facilities. TDT acknowledges the financial support from Indian National Science Academy (INSA, New Delhi) and Polish Academy of Sciences (PAS), Poland in the form of bilateral exchange program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Dennis Thomas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheruvathur, M.K., Thomas, T.D. Shoot organogenesis from root-derived callus of Rhinacanthus nasutus (L.) Kurz. and assessment of clonal fidelity of micropropagted plants using RAPD analysis. Appl Biochem Biotechnol 172, 1172–1182 (2014). https://doi.org/10.1007/s12010-013-0598-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0598-z

Keywords

Navigation