Skip to main content

Advertisement

Log in

The Study of Ascorbate Peroxidase, Catalase and Peroxidase During In Vitro Regeneration of Argyrolobium roseum

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Here, we demonstrate the micropropagation protocol of Argyrolobium roseum (Camb.), an endangered herb exhibiting anti-diabetic and immune-suppressant properties, and antioxidant enzymes pattern is evaluated. Maximum callogenic response (60 %) was observed from leaf explant at 1.0 mg L−1 1-nephthalene acetic acid (NAA) and 0.5 mg L−1 6-benzyl aminopurine (BA) in Murashige and Skoog (MS) medium using hypocotyl and root explants (48 % each). Addition of AgNO3 and PVP in the culture medium led to an increase in callogenic response up to 86 % from leaf explant and 72 % from hypocotyl and root explants. The best shooting response was observed in the presence of NAA, while maximum shoot length and number of shoots were achieved based on BA-supplemented MS medium. The regenerated shoots were rooted and successfully acclimatized under greenhouse conditions. Catalase and peroxidase enzymes showed ascending pattern during in vitro plant development from seed while ascorbate peroxidase showed descending pattern. Totally reverse response of these enzymes was observed during callus induction from three different explants. During shoot induction, catalase and peroxidase increased at high rate while there was a mild reduction in ascorbate peroxidase activity. Catalase and peroxidase continuously increased; on the other hand, ascorbate peroxidase activity decreased during root development and acclimatization states. The protocol described here can be employed for the mass propagation and genetic transformation of this rare herb. This study also highlights the importance and role of ascorbate peroxidase, catalase, and peroxidase in the establishment of A. roseum in vitro culture through callogenesis and organogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of Variance

APX:

Ascorbate Peroxidase

BA:

6-Benzyl Aminopurine

CAT:

Catalase

EDTA:

Ethylene Diamine Tetraacetic Acid

IAA:

Indol Acetic Acid

IBA:

Indol 3 Butyric Acid

LSD:

Least Significant Distance

MS:

Murashige and Skoog

NAA:

1-Nephthalene Acetic Acid

OD:

Optical Density

PVP:

Polyvinyl Pyrrolidone

ROSs:

Reactive Oxygen Species

SOD:

Superoxide Dismutase

POD:

Peroxidase

References

  1. Inze, D., & Van Montagu, M. (1995). Current Opinion in Biotechnology, 6, 153–158.

    Article  CAS  Google Scholar 

  2. Mehlhorn, H., Lelandais, M., Korth, H. G., & Foyer, C. H. (1996). FEBS Letters, 378, 203–206.

    Article  CAS  Google Scholar 

  3. Pellinen, R. I., Minna-Sisko, K., Tauriainen, A. A., Palva, E. T., & Kangasja, R. V. I. (2002). Plant Physiology, 130, 549–560.

    Article  CAS  Google Scholar 

  4. Gill, S. S., & Tuteja, N. (2010). Plant Physiology and Biochemistry, 48, 909–930.

    Article  CAS  Google Scholar 

  5. Luo, Z. B., He, X. J., Chen, L., Tang, L., Gao, S., & Chen, F. (2010). International Journal of Agriculture and Biology, 12, 119–124.

    CAS  Google Scholar 

  6. Mittler, R. (2002). Trends in Plant Science, 7, 405–410.

    Article  CAS  Google Scholar 

  7. Molassioti, A. N., Dimassi, K., Diamantidis, G., & Therios, I. (2004). Biologium Plantarum, 48, 1–5.

    Article  Google Scholar 

  8. Libik, M., Konieczny, R., Pater, B., Slesak, I., & Miszalski, Z. (2005). Plant Cell Reports, 23, 834–841.

    Article  CAS  Google Scholar 

  9. Cui, K., Gengsheng, X., Xinmin, L., Gengmei, X., & Yafu, W. (1999). Journal of Plant Science, 146, 9–16.

    Article  CAS  Google Scholar 

  10. Tang, W., & Newton, R. J. (2005). Plant Growth Regulation, 46, 31–43.

    Article  CAS  Google Scholar 

  11. Van Huylenbroeck, J. M., De Riek, J., & De Loose, M. (2000). Genetic Resources and Crops Evolution, 47, 335–343.

    Google Scholar 

  12. Synková, H., & Pospíšilová, J. (2002). Journal of Plant Physiology, 159, 781–789.

    Article  Google Scholar 

  13. Ahmad, N., Abbasi, B. H., & Fazal, H. (2013). Industrial Crops and Products, 49, 164–168.

    Article  CAS  Google Scholar 

  14. Shinwari, M. I., & Khan, M. A. (2000). Journal of Ethnopharmacology, 69, 45–46.

    Article  CAS  Google Scholar 

  15. Khanna, P. K., Ahuja, A., Sharada, M., Ram, G., Koul, K., & Kaul, M. K. (2006). Biologia Plantarum, 50, 417–420.

    Article  Google Scholar 

  16. Murashige, T., & Skoog, F. (1962). Plant Physiology, 15, 472–497.

    Google Scholar 

  17. Bradford, M. (1976). Annals of Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  18. Nakano, & Asada, K. (1981). Plant and Cell Physiology, 22, 867–880.

    CAS  Google Scholar 

  19. Aebi, H. U. (1983). Catalase. In H. U. Bergmeyer (Ed.), Methods in enzymatic analysis (Vol. 3, pp. 276–286). NewYork: Academic.

    Google Scholar 

  20. Zhou, W., & Leul, M. (1999). Journal of Plant Growth Regulation, 27, 99–104.

    Article  CAS  Google Scholar 

  21. Zia, M., Mannan, A., & Chaudhary, M. F. (2007). Pakistan Journal of Botany, 39, 799–805.

    Google Scholar 

  22. Cho, M. J., Jiang, W., & Lemaux, G. P. (1998). Plant Science, 138, 229–244.

    Article  CAS  Google Scholar 

  23. Bibi, Y., Zia, M., Nisa, S., Habib, D., Waheed, A., & Chaudhary, M. F. (2011). Journal of Biological Engineering, 5, 13.

    Article  CAS  Google Scholar 

  24. Yu, Y., Wang, J., Zhu, M. L., & Wei, Z. M. (2008). Plant Breeding, 127, 249–255.

    Article  CAS  Google Scholar 

  25. Park, Y. S., Jung, S. T., Kang, S. G., Drzewiecki, J., Namiesnik, J., & Haruenkit, R. (2006). International Journal of Food Sciences and Nutrition, 57, 107–122.

    Article  CAS  Google Scholar 

  26. Mundhara, R., & Rashid, A. (2006). Plant Science, 170, 185–190.

    Article  CAS  Google Scholar 

  27. Hashem, A. D., & Kaviani, B. (2010). Australian Journal of Crop Science, 4, 216–222.

    Google Scholar 

  28. Varshney, A., & Johnson, S. T. (2010). Plant Biotechnology Report, 4, 139–148.

    Article  Google Scholar 

  29. Cenkci, S., Kargioglu, M., Dayan, S., & Konuk, M. (2008). Biologia, 63, 652–657.

    Article  Google Scholar 

  30. Erisen, S., Yorgancılar, M., Atalay, E., Babaoğlu, M., & Duran, A. (2010). Electronic Journal of Biotechnology, 13, 1–7.

    Article  Google Scholar 

  31. Faisal, M., Siddique, I., & Anis, M. (2006). In VITRO CELLULAR AND DEVELOPMENTAL BIOLOGY - PLANT, 42, 56–64.

    Article  Google Scholar 

  32. Shahzad, A., Faisal, M., & Anis, M. (2007). Annals of Applied Biology, 150, 341–349.

    Article  CAS  Google Scholar 

  33. Bowler, C., Van Montagu, M. D., & Inze, D. (1992). Annual Review of Plant Physiology and Plant Molecular Biology, 43, 83–116.

    Article  CAS  Google Scholar 

  34. Asada, K. (1999). Annual Review of Plant Physiology and Plant Molecular Biology, 50, 601–639.

    Article  CAS  Google Scholar 

  35. Gidrol, X., Lin, W. S., Dégousee, N., Yip, S. F., & Kush, A. (1994). European Journal of Biochemistry, 224, 21–28.

    Article  CAS  Google Scholar 

  36. Schopfer, P., Plachy, C., & Frahry, G. (2001). Plant Physiology, 125, 1591–1602.

    Article  CAS  Google Scholar 

  37. Hite, D. R. C., Auh, C., & Scandalios, J. G. (1999). Redox Report, 4, 29–34.

    Article  CAS  Google Scholar 

  38. Bailly, C., Bogatek-Leszczynska, R., Côme, D., & Corbineau, F. (2002). Seed Science Research, 12, 47–55.

    Article  CAS  Google Scholar 

  39. Caliskan, M., & Cuming, A. C. (1998). Plant Journal, 15, 165–171.

    Article  CAS  Google Scholar 

  40. Morohashi, Y. (2002). Journal of Experimental Botany, 53, 1643–1650.

    Article  CAS  Google Scholar 

  41. Caro, A., & Puntarulo, S. (1999). Free Radical Research, 31, S205–S212.

    Article  CAS  Google Scholar 

  42. Rajeshwari, V., & Paliwal, K. (2008). In Vitro Cellular and Developmental Biology - Plant, 44, 78–83.

    Article  Google Scholar 

  43. Molassiotis, A., Diamantidis, G., Therios, I., Tsirakoglou, V., & Dimassi, K. (2005). Plant Growth Regulation, 46, 69–78.

    Article  CAS  Google Scholar 

  44. Dabrowska, G., Kata, A., Goci, A., Hebda, S. M., & Krzypek, S. (2007). Acta Biologica Cracoviensia Series Botanica, 49/1, 7–17.

    Google Scholar 

  45. Patterson, W. R., Poulos, T. L., & Goodin, D. B. (1995). Biochemistry, 34, 4342–4345.

    Article  CAS  Google Scholar 

  46. Wakamatsu, K., & Takahama, U. (1993). Plant Physiology, 88(1), 167–171.

    Article  CAS  Google Scholar 

  47. Lagrimini, L. M., & Rothstein, S. (1987). Plant Physiology, 84, 438–442.

    Article  CAS  Google Scholar 

  48. Gupta, S. D., & Datta, S. (2003). Biologia Plantarum, 47, 179–183.

    Article  CAS  Google Scholar 

  49. Park, S. Y., Ryu, S. H., Jang, I. C., Kwon, S. Y., Kim, J. G., & Kwak, S. S. (2004). Molecular Genetics and Genomics, 271, 339–346.

    Article  CAS  Google Scholar 

  50. Apostol, I., Heinstein, P. F., & Low, P. S. (1989). Plant Physiology, 99, 109–116.

    Article  Google Scholar 

  51. Tian, M., Gu, Q., & Zhu, M. Y. (2003). Plant Science, 165, 701–707.

    Article  CAS  Google Scholar 

  52. Papadakis, K., Siminis, C. I., & Roubelakis-Angelakis, K. A. (2001). Plant Physiology, 126, 434–441.

    Article  CAS  Google Scholar 

  53. Bagnoli, F., Capuana, M., & Racchi, M. L. (1998). Australian Journal of Plant Physiology, 25, 909–913.

    Article  CAS  Google Scholar 

  54. Racchi, M. L., Bagnoli, F., Balla, I., & Danti, S. (2001). Plant Cell Reports, 20, 169–174.

    Article  CAS  Google Scholar 

  55. De Tullio, M. C., & Arrigoni, O. (2003). Seed Science Research, 13, 249–260.

    Article  Google Scholar 

  56. Kato, N., & Esaka, M. (1999). Plant Physiology, 105, 321–329.

    Article  CAS  Google Scholar 

  57. Pastori, G. M., Kiddle, G., Antoniw, J., Bernard, S., Veljovic-Jovanovic, S., Verrier, P. J., et al. (2003). Plant Cell, 15, 939–951.

    Article  CAS  Google Scholar 

  58. Thakar, J., & Bhargava, S. (1999). Plant Cell, Tissue and Organ Culture, 59, 181–187.

    Article  Google Scholar 

  59. Meratan, A. A., Gaffari, S. M., & Nikram, V. (2009). Biologia Plantarum, 53, 5–10.

    Article  CAS  Google Scholar 

  60. Shigeoka, S., Ishikawa, T., Tamoi, M., Miyagawa, Y., Takeda, T., Yabuta, Y., et al. (2002). Journal of Experimental Botany, 53, 1305–1319.

    Article  CAS  Google Scholar 

  61. Hiraga, S., Sasaki, K., Ito, H., Ohashi, Y., & Matsui, H. (2001). Plant and Cell Physiology, 4, 462–468.

    Article  Google Scholar 

  62. Gaspar, T., Penel, E., Thorpe, T., & Greppin, H. (1982). Switzerland: Univ. of Geneva.

  63. Masahiro, K., Hirofumi, N., & Masahito, T. (2001). Advances in Biochemical Engineering, 72, 183–218.

    Article  Google Scholar 

  64. Kanmegne, G., & Omokolo, N. D. (2003). Plant Growth Regulation, 40, 53–57.

    Article  CAS  Google Scholar 

  65. Chakrabarty, D., & Datta, K. S. (2008). Acta Physiologiae Plantarum, 30, 325–331.

    Article  CAS  Google Scholar 

  66. Abbasi, B. H., Rashid, A., Khan, M. A., Ali, M., Shinwari, Z. K., Ahmad, N., et al. (2011). Pakistan Journal of Botany, 43, 21–27.

    CAS  Google Scholar 

  67. Hodges, D. M., & Forney, C. F. (2000). Journal of Experimental Botany, 51, 645–655.

    Article  CAS  Google Scholar 

  68. Navabpour, S., Morris, K., Allen, R., Harrison, E., Mackerners, S. A. H., Buchanan, W., et al. (2003). Journal of Experimental Botany, 54, 2285–2292.

    Article  CAS  Google Scholar 

  69. Zheng, X., & Van Huyster, R. B. (1992). Phytochemistry, 31, 1895–1898.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Zia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 399 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Habib, D., Chaudhary, M.F. & Zia, M. The Study of Ascorbate Peroxidase, Catalase and Peroxidase During In Vitro Regeneration of Argyrolobium roseum . Appl Biochem Biotechnol 172, 1070–1084 (2014). https://doi.org/10.1007/s12010-013-0591-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0591-6

Keywords

Navigation