Skip to main content
Log in

Mineralization and Kinetics of Reactive Brilliant Red X-3B by a Combined Anaerobic–Aerobic Bioprocess Inoculated with the Coculture of Fungus and Bacterium

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Mineralization of Reactive Brilliant Red X-3B by a combined anaerobic–aerobic process which was inoculated with the co-culture of Penicillium sp. QQ and Exiguobacterium sp. TL was studied. The optimal conditions of decolorization were investigated by response surface methodology as follows: 132.67 g/L of strain QQ wet spores, 1.09 g/L of strain TL wet cells, 2.25 g/L of glucose, 2.10 g/L of yeast extract, the initial dye concentration of 235.14 mg/L, pH 6.5, and 33 °C. The maximal decolorization rate was about 96 % within 12 h under the above conditions. According to the Haldane kinetic equation, the maximal specific decolorization rate was 89.629 mg/g˙h. It was suggested that in the anaerobic–aerobic combined process, decolorization occurred in the anaerobic unit and chemical oxygen demand (COD) was mainly removed in the aerobic one. Inoculation of fungus QQ in the anaerobic unit was important for mineralization of X-3B. Besides, the divided anaerobic–aerobic process showed better performance of COD removal than the integrated one. It was suggested that the combined anaerobic–aerobic process which was inoculated with co-culture was potentially useful for the field application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Forgacs, E., Cserháti, T., & Oros, G. (2004). Environ. Int, 30, 953–971.

    Article  CAS  Google Scholar 

  2. Spadaro, J. T., Gold, M. H., & Renganathan, V. (1992). Appl. Environ. Microbiol, 58, 2397–2401.

    CAS  Google Scholar 

  3. Pandey, A., Singh, P., & Iyengar, L. (2007). Int. Biodeterior. Biodegrad, 59, 73–84.

    Article  CAS  Google Scholar 

  4. van der Zee, F. P., & Villaverde, S. (2005). Water Res, 39, 1425–1440.

    Article  Google Scholar 

  5. Verma, P., & Madamwar, D. (2003). World J. Microbiol. Biotechnol, 19, 615–618.

    Article  CAS  Google Scholar 

  6. Gou, M., Qu, Y. Y., Zhou, J. T., Ma, F., & Tan, L. (2009). J. Hazard. Mater, 170, 314–319.

    Article  CAS  Google Scholar 

  7. Hofrichter, M. (2002). Enzyme Microb Technol, 30, 454–466.

    Article  CAS  Google Scholar 

  8. Chen, K. C., Wu, J. Y., Liou, D. J., & Hwang, S. C. (2003). J. Biotechnol, 101, 57–68.

    Article  CAS  Google Scholar 

  9. Blümel, S., & Stolz, A. (2003). Appl. Microbiol. Biotechnol, 62, 186–190.

    Article  Google Scholar 

  10. Heinfling, A., Bergbauer, M., & Szewzyk, U. (1997). Appl. Microbiol. Biotechnol, 48, 261–266.

    Article  CAS  Google Scholar 

  11. Balan, D. S. L., & Monteiro, R. T. R. (2001). J. Bacteriol, 89, 141–145.

    CAS  Google Scholar 

  12. Casieri, L., Varese, G. C., Anastasi, A., Prigione, V., Svobodová, K., Fillppelo Marchisio, V., & Novotný, C. (2008). Folia Microbiol, 53, 44–52.

    Article  CAS  Google Scholar 

  13. Muthukumar, M., & Selvakumar, N. (2004). Dyes Pigm, 62, 221–228.

    Article  CAS  Google Scholar 

  14. Boer, W., Folman, L. B., Summerbell, R. C., & Boddy, L. (2005). FEMS Microbiol Rev, 29, 795–811.

    Article  Google Scholar 

  15. Pennisi, E. (2004). Science, 304, 1620–1622.

    Article  CAS  Google Scholar 

  16. Kapdan, I. K., & Alparslan, S. (2005). Enzyme Microb Technol, 36, 273–279.

    Article  CAS  Google Scholar 

  17. Supaka, N., Juntongjin, K., Damronglerd, S., Delia, M. L., & Strehaiano, P. (2004). Chem. Eng. J, 99, 169–176.

    Article  CAS  Google Scholar 

  18. Tan, L., Qu, Y. Y., Zhou, J. T., Ma, F., & Li, A. (2009). Bioresour Technol, 100, 3003–3009.

    Article  CAS  Google Scholar 

  19. Zhang, C. H., Ma, Y. J., Yang, F. X., Liu, W., & Zhang, Y. D. (2009). Bioresour Technol, 100, 4284–4288.

    Article  CAS  Google Scholar 

  20. Zhao, L. J., Zhou, J. T., Jia, Y. H., & Chen, J. F. (2010). J. Hazard. Mater, 181, 602–608.

    Article  CAS  Google Scholar 

  21. Sharma, S., Malik, A., & Satya, S. (2009). J. Hazard. Mater, 164, 1198–1204.

    Article  CAS  Google Scholar 

  22. Montgomery, D. C. (1991). Design and analysis of experiments. New York: Wiley.

    Google Scholar 

  23. Mohana, S., Shrivastava, S., Divecha, J., & Madamwar, D. (2008). Bioresour Technol, 99, 562–569.

    Article  CAS  Google Scholar 

  24. Mohana, S., Desai, C., & Madamwar, D. (2007). Bioresour Technol, 98, 333–339.

    Article  CAS  Google Scholar 

  25. Khehra, M. S., Saini, H. S., Sharma, D. K., Chadha, B. S., & Chimni, S. S. (2005). Dyes Pigm, 67, 55–61.

    Article  CAS  Google Scholar 

  26. Hu, T. L. (1994). Bioresour Technol, 49, 47–51.

    Article  CAS  Google Scholar 

  27. Kaushik, P., & Malik, A. (2009). Environ Int, 35, 127–141.

    Article  CAS  Google Scholar 

  28. Kolekar, Y. M., Pawar, S. P., Gawai, K. R., Lokhande, P. D., Shouche, Y. S., & Kodam, K. M. (2008). Bioresour Technol, 99, 8999–9003.

    Article  CAS  Google Scholar 

  29. Chen, B. Y. (2002). Process Biochem, 38, 437–446.

    Article  CAS  Google Scholar 

  30. Lin, J., Zhang, X., Li, Z., & Lei, L. (2010). Bioresour Technol, 101, 34–40.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (nos. 51078054, 51108120, and 51178139), the National Creative Research Group from the National Natural Science Foundation of China (no. 51121062), the 4th China Postdoctoral Science Special Foundation (no. 201104430), and the 46th China Postdoctoral Science Foundation (no. 20090460901).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fang Ma or Yuanyuan Qu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, S., Ma, F., Sun, T. et al. Mineralization and Kinetics of Reactive Brilliant Red X-3B by a Combined Anaerobic–Aerobic Bioprocess Inoculated with the Coculture of Fungus and Bacterium. Appl Biochem Biotechnol 172, 1106–1120 (2014). https://doi.org/10.1007/s12010-013-0550-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0550-2

Keywords

Navigation