Skip to main content
Log in

Depletion of the xynB2 Gene Upregulates β-Xylosidase Expression in C. crescentus

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Caulobacter crescentus is able to express several enzymes involved in the utilization of lignocellulosic biomasses. Five genes, xynB15, that encode β-xylosidases are present in the genome of this bacterium. In this study, the xynB2 gene, which encodes β-xylosidase II (CCNA_02442), was cloned under the control of the PxylX promoter to generate the O-xynB2 strain, which overexpresses the enzyme in the presence of xylose. In addition, a null mutant strain, Δ-xynB2, was created by two homologous recombination events where the chromosomal xynB2 gene was replaced by a copy that was disrupted by the spectinomycin-resistant cassette. We demonstrated that C. crescentus cells lacking β-xylosidase II upregulates the xynB genes inducing β-xylosidase activity. Transcriptional analysis revealed that xynB1 (RT-PCR analysis) and xynB2 (lacZ transcription fusion) gene expression was induced in the Δ-xynB2 cells, and high β-xylosidase activity was observed in the presence of different agro-industrial residues in the null mutant strain, a characteristic that can be explored and applied in biotechnological processes. In contrast, overexpression of the xynB2 gene caused downregulation of the expression and activity of the β-xylosidase. For example, the β-xylosidase activity that was obtained in the presence of sugarcane bagasse was 7-fold and 16-fold higher than the activity measured in the C. crescentus parental and O-xynB2 cells, respectively. Our results suggest that β-xylosidase II may have a role in controlling the expression of the xynB1 and xynB2 genes in C. crescentus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lynch, J. M. (1987). Utilization of lignocellulosic wastes. Journal of Applied Microbiology, 63, 71–83.

    Google Scholar 

  2. Jordan, D. B., & Wagschal, K. (2010). Properties and applications of microbial β-d-xylosidases featuring the catalytically efficient enzyme from Selenomonas ruminantium. Applied Microbiology and Biotechnology, 86, 1647–1658.

    Article  CAS  Google Scholar 

  3. Ahmed, S., Saba, R., & Jamil, A. (2009). Molecular cloning of fungal xylanases: an overview. Applied Microbiology and Biotechnology, 84, 19–35.

    Article  CAS  Google Scholar 

  4. Poindexter, J. S. (1964). Biological properties and classification of the Caulobacter group. Bacteriological Reviews, 28, 231–295.

    CAS  Google Scholar 

  5. Poindexter, J. S. (1981). The Caulobacters: ubiquitous unusual bacteria. Microbiological Reviews, 45, 123–179.

    CAS  Google Scholar 

  6. Nierman, W. C., Feldblyum, T. V., Laub, M. T., Paulsen, I. T., Nelson, K. E., Eisen, J., et al. (2001). Complete genome sequence of Caulobacter crescentus. Proc. Natl. Acad. Sci. USA, 98, 4136–4141.

    Article  CAS  Google Scholar 

  7. Marks, M. E., Castro-Rojas, C. M., Teiling, C. D. U. L., Kapatral, V., Walunas, T. L., & Crosson, S. (2010). The genetics basis of laboratory adaptation in Caulobacter crescentus. Journal of Bacteriology, 192, 3678–3688.

    Article  CAS  Google Scholar 

  8. Santos, C. R., Polo, C. C., Corrêa, J. M., Simão, R. C. G., Seixas, F. A. V., & Murakami, M. T. (2012). Accessory domain changes accessibility and molecular topography of the catalytic interface in monomeric GH39 beta-xylosidases. Acta Cryst D, 68, 1339–1345.

    Article  Google Scholar 

  9. Corrêa, J. M., Graciano, L., Abrahão, J., Loth, E. A., Gandra, R. F., Kadowaki, M. K., et al. (2012). Expression and characterization of a GH39 β-xylosidase II from Caulobacter crescentus. Applied Biochemistry and Biotechnology, 168, 2218–2229.

    Article  Google Scholar 

  10. Yang, J. K., Yoon, H.-J., Ahn, H. J., Lee, B. I., Pedelacq, J.-D., Liong, E. C., et al. (2004). Crystal structure of beta-d-xylosidase from Thermoanaerobacterium saccharolyticum, a family 39 glycoside hydrolase. Journal of Molecular Biology, 335, 155–165.

    Article  CAS  Google Scholar 

  11. Czjzek, M., David, A. B., Bravman, T., Shoham, G., Henrissat, B., & Shoham, Y. (2005). Enzyme-substrate complex structures of a GH39 β-xylosidase from Geobacillus stearothermophilus. Journal of Molecular Biology, 353, 838–846.

    Article  CAS  Google Scholar 

  12. Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual (2nd ed.). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  13. Evinger, M., & Agabian, N. (1977). Envelope-associated nucleoid from Caulobacter crescentus stalked and swarmer cells. Journal of Bacteriology, 132, 294–301.

    CAS  Google Scholar 

  14. Simon, R., Prieffer, U., & Puhler, A. (1983). A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Biotechnology, 1, 784–790.

    Article  CAS  Google Scholar 

  15. Gober, J. W., & Shapiro, L. (1992). A developmentally regulated Caulobacter flagellar promoter is activated by 3′ enhancer and IHF binding elements. Molecular Biology of the Cell, 3, 913–916.

    Article  CAS  Google Scholar 

  16. Prentki, P., & Krisch, H. M. (1984). In vitro insertional mutagenesis with a selectable DNA fragments. Gene, 29, 303–313.

    Article  CAS  Google Scholar 

  17. Ely, B. (1991). Genetics of Caulobacter crescentus. Methods in Enzymology, 204, 372–384.

    Article  CAS  Google Scholar 

  18. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head bacteriophage T4. Nature, 226, 680–685.

    Article  Google Scholar 

  19. Towbin, H., Staehelin, T., & Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Nat Acad Sci USA, 76, 4350–4354.

    Article  CAS  Google Scholar 

  20. Miller, J. H. (1972). Cold Spring Harbor (pp. 352–355). New York: Cold Spring Harbor Laboratory.

    Google Scholar 

  21. Graciano, L., Corrêa, J. M., Gandra, R. F., Seixas, F. A. V., Kadowaki, M. K., Sampaio, S. C., et al. (2012). The cloning, expression, purification, characterization and modeled structure of Caulobacter crescentus β - xylosidase I. World Journal of Microbiology and Biotechnology, 28, 2879–2888.

    Article  CAS  Google Scholar 

  22. Hottes, A. K., Meewan, M., Yang, D., Arana, N., Romero, P., McAdams, H. H., et al. (2004). Transcriptional profiling of Caulobacter crescentus during growth on complex and minimal media. Journal of Bacteriology, 186, 1448–1461.

    Article  CAS  Google Scholar 

  23. Turatsinze, J. V., Thomas-Chollier, M., Defrance, M., & van Helden, J. (2008). Using RSAT to scan genome sequences for transcription factor binding sites and cis-regulatory modules. Nature Protocols, 3, 1578–1588.

    Article  CAS  Google Scholar 

  24. Stephens, C., Christen, B., Fuchs, T., Sundaram, V., Watanabe, K., & Jenal, U. (2007). Genetic analysis of a novel pathway for d-xylose metabolism in Caulobacter crescentus. Journal of Bacteriology, 189, 2181–2185.

    Article  CAS  Google Scholar 

  25. Stephens, C., Christen, B., Watanabe, K., Fuchs, T., & Jenal, U. (2007). Regulation of d-xylose metabolism in Caulobacter crescentus by a LacI-type repressor. Journal of Bacteriology, 189, 8828–8834.

    Article  CAS  Google Scholar 

  26. Schultz, J., Milpetz, F., Bork, P., & Ponting, C. P. (1998). SMART, a simple modular architecture research tool: identification of signaling domains. PNAS, 95, 5857–5864.

    Article  CAS  Google Scholar 

  27. Lobley, A., Sadowski, M. I., & Jones, D. T. (2009). pGenTHREADER and pDomTHREADER: new methods for improved protein fold recognition and superfamily discrimination. Bioinformatics, 25, 1761–1767.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Araucaria Foundation and CNPq. R.C.G. Simão was partially supported by Araucaria Foundation (process 893/2012). M. R. Mingori and J. M. Corrêa are fellows of the CNPq and Coordination of Improvement of Higher Education Personnel (CAPES), respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita de Cássia Garcia Simão.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 3415 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corrêa, J.M., Mingori, M.R., Gandra, R.F. et al. Depletion of the xynB2 Gene Upregulates β-Xylosidase Expression in C. crescentus . Appl Biochem Biotechnol 172, 1085–1097 (2014). https://doi.org/10.1007/s12010-013-0549-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0549-8

Keywords

Navigation