Skip to main content
Log in

Genome Shuffling of Penicillium citrinum for Enhanced Production of Nuclease P1

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Genome shuffling is a powerful approach for efficiently engineering industrial microbial strains with interested phenotypes. Here we reported a high producer of nuclease P1, Penicillium citrinum G-16, that was bred by the classical physics-mutagenesis and genome shuffling process. The starting populations were generated by 60Co γ-irradiation mutagenesis. The derived two protoplast fractions were inactivated by heat-treatment and ultraviolet radiation respectively, then mixed together and subjected to recursive protoplast fusion. Three recombinants, E-16, F-71, and G-16, were roughly obtained from six cycles of genome shuffling. The activity of nuclease P1 by recombinant G-16 was improved up to 1,980.22 U4/ml in a 5-l fermentor, which was 4.7-fold higher than that of the starting strain. The sporulation of recombinant G-16 was distinguished from the starting strain. Random amplified polymorphic DNA assay revealed genotypic differences between the shuffled strains and the wild type strain. The close similarity among the high producers suggested that the genetic basis of high-yield strains was achieved by genome shuffling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Munetaka, S., Jun, I., Shigenmi, A., & Hiroo, F. (2000). Endonucleases. Plant Molecular Biology, 44, 387–397.

    Article  Google Scholar 

  2. Gangadhara, B. N., Kumar, P. R., & Prakash, V. (2008). Enhancement of nuclease P1 activity in low concentration of denaturants. Enzyme and Microbial Technology, 43, 336–342.

    Article  CAS  Google Scholar 

  3. Burdock, G. A., Flamm, W. G., & Carabin, I. G. (2000). Toxicity and mutagenicity studies of DN-50000® and RP-1® enzymes. Food and Chemical Toxicology, 38, 429–442.

    Article  CAS  Google Scholar 

  4. Warnecke, J. M., Sontheimer, E. J., Piccirilli, J. A., & Hartmann, R. K. (2000). Active site constraints in the hydrolysis reaction catalyzed by bacterial RNase P: analysis of precursor tRNAs with a single 3′-S-phosphorothiolate internucleotide linkage. Nucleic Acids Research, 28, 720–727.

    Article  CAS  Google Scholar 

  5. Li, H. H., He, Y. H., Yuan, Y., & Guan, Z. (2011). Nuclease p1: a new biocatalyst for direct asymmetric aldol reaction under solvent-free conditions. Green Chemistry, 13, 185–189.

    Article  CAS  Google Scholar 

  6. Shi, L. E., Yi, Y., Tang, Z. X., Xiong, W. Y., Mei, J. F., & Ying, G. Q. (2010). Nuclease p1 immobilized on deae cellulose. Brazilian Journal of Chemical Engineering, 27, 31–39.

    Article  CAS  Google Scholar 

  7. Li, B., Chen, Y., Chen, X., Liu, D., Niu, H., Xiong, J., et al. (2012). A novel immobilization method for nuclease P1 on macroporous absorbent resin with glutaraldehyde cross-linking and determination of its properties. Process Biochemistry, 47, 655–670.

    CAS  Google Scholar 

  8. He, Q. T., Li, N., Chen, X. C., Ye, Q., Bai, J. X., Xiong, J., et al. (2011). Mutation breeding of nuclease p1 production in Penicillium citrinum by low-energy ion beam implantation. Korean Journal of Chemical Engineering, 28, 544–549.

    Article  CAS  Google Scholar 

  9. Li, K., Zeng, Q., & Xiang, Z. (2007). Selection of Biochemical Mutants that Overproduce Nuclease P1 and Optimization of the Fermentation Conditions. Journal of Yunnan Agricultural University, 6, 898–904.

    Google Scholar 

  10. Matthew, T. W., & Laurence, D. H. (2012). Direct and indirect consequences of meiotic recombination: implications for genome evolution. Trends in Genetics, 28, 101–109.

    Article  Google Scholar 

  11. Zhang, Y. X., Perry, K., Vinci, V. A., Powell, K., Stemmer, W. P., & Del Cardayré, S. B. (2002). Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature, 415, 644–646.

    Article  CAS  Google Scholar 

  12. Jin, Z. H., Xu, B., Lin, S. Z., Jin, Q. C., & Cen, P. L. (2009). Enhanced Production of Spinosad in Saccharopolyspora spinosa by Genome Shuffling. Applied Biochemistry and Biotechnology, 159, 655–663.

    Article  CAS  Google Scholar 

  13. Wang, H. K., Zhang, J., & Wang, X. J. (2012). Genome shuffling improves production of the low-temperature alkalophilic lipase by Acinetobacter johnsonii. Biotechnology Letters, 34, 145–151.

    Article  Google Scholar 

  14. El-Bondkly, A. M. A. (2012). Molecular identification using ITS sequences and genome shuffling to improve 2-deoxyglucose tolerance and xylanase activity of marine-derived fungus, Aspergillus sp. NRCF5. Applied Biochemistry and Biotechnology, 167, 2160–2173.

    Article  CAS  Google Scholar 

  15. Li, S., Li, F., Chen, X. S., Wang, L., Xu, J., Tang, L., et al. (2012). Genome shuffling enhanced ε-poly-l-lysine production by improving glucose tolerance of Streptomyces graminearus. Applied Biochemistry and Biotechnology, 166, 414–423.

    Article  CAS  Google Scholar 

  16. Burkhard, O., Eike, G., Osama, M., & Stefan, J. (2009). Genome shuffling in Clostridium diolis DSM 15410 for improved 1,3-propanediol production. Applied and Environmental Microbiology, 75, 7610–7616.

    Article  Google Scholar 

  17. Gregory, S. (2002). Metabolic engineering by genome shuffling. Nature Biotechnology, 20, 666–668.

    Article  Google Scholar 

  18. Lv, X. A., Jin, Y. Y., Li, Y. D., Zhang, H., & Liang, X. L. (2013). Genome shuffling of Streptomyces viridochromogenes for improved production of avilamycin. Applied Microbiology and Biotechnology, 97, 641–648.

    Article  CAS  Google Scholar 

  19. Futoshi, N., Ichiro, W., & Nobufusa, S. (1993). Development of transformation system for the filamentous, ML-236B (compactin) - producing fungus Penicilliurn citrinum. Current Genetics, 23, 28–32.

    Article  Google Scholar 

  20. Tahoun, M. K. (1993). Gene manipulation by protoplast fusion and penicillin production by Penicillium chrysogenum. Applied Biochemistry and Biotechnology, 39(40), 445–453.

    Article  Google Scholar 

  21. Savitha, S., Sadhasivam, S., & Swaminathan, K. (2010). Regeneration and molecular characterization of an intergeneric hybrid between Graphium putredinis and Trichoderma harzianum by protoplasmic fusion. Biotechnology Advances, 28, 282–292.

    Article  Google Scholar 

  22. Abe, Y., Baba, S., Suzuke, T., Ono, C., Iwamoto, K., & Hosobuchi, M. (2004). Molecular basis of ML-236B production in the high-producing mutant No. 41520 of Penicillium citrinum. Journal of General Applied Microbiology, 50, 169–176.

    Article  CAS  Google Scholar 

  23. Ying, G. Q., Shi, L. E., Yua, Y., Tang, Z. X., & Chen, J. S. (2006). Production, purification and characterization of nuclease p1 from Penicillium citrinum. Process Biochemistry, 41, 1276–1281.

    Article  CAS  Google Scholar 

  24. Patnaik, R., Louie, S., Gavrilovic, V., Perry, K., Stemmer, W. P. C., Ryan, C. M., et al. (2002). Genome shuffling of Lactobacillus for improved acid tolerance. Nature, 20, 707–712.

    Article  CAS  Google Scholar 

  25. Yu, L., Pei, X., Lei, T., Wang, Y., & Feng, Y. (2008). Genome shuffling enhanced l-lactic acid production by improving glucose tolerance of Lactobacillus rhamnosus. Journal of Biotechnology, 134, 154–159.

    Article  CAS  Google Scholar 

  26. Cheng, Y., Song, X., Qin, Y., & Qu, Y. (2009). Genome shuffling improves production of cellulase by Penicillium decumbens JU-A10. Journal of Applied Microbiology, 107, 1738–1846.

    Article  Google Scholar 

  27. Hide, H., Yamada, T., & Yamada, Y. (2007). Genome shuffling of Streptomyces sp. U121 for improved production of hydroxycitic acid. Applied Microbiology and Biotechnology, 73, 1387–1393.

    Article  Google Scholar 

  28. Wucherpfennig, T., Kiep, K. A., Driouch, H., Wittmann, C., & Krull, R. (2010). Chapter 4 - morphology and rheology in filamentous cultivations. Advances in Applied Microbiology, 73, 89–136.

    Article  Google Scholar 

  29. Wucherpfennig, T., Hestler, T., & Krull, R. (2001). Morphology engineering - osmolality and its effect on Aspergillus niger morphology and productivity. Microbial Cell Factories, 10, 58.

    Article  Google Scholar 

  30. Angel, M., & Ruben, A. (2008). Mycelium differentiation and antibiotic production in submerged cultures of Streptomyces coelicolor. Applied and Environmental Microbiology, 12, 3877–3886.

    Google Scholar 

  31. Xu, B., Jin, Z. H., Wang, H. Z., Jin, Q. C., Jin, X., & Cen, P. L. (2008). Evolution of Streptomyces pristinaespiralis for resistance and production of pristinamycin by genome shuffling. Applied Microbiology and Biotechnology, 80, 261–267.

    Article  CAS  Google Scholar 

  32. El-Gendy, M. M., & EL-Bondkly, A. M. (2011). Genome shuffling of marine derived bacterium Nocardia sp. ALAA 2000 for improved ayamycin production. Antonie Van Leeuwenhoek, 99, 773–780.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was financially supported by the National Nature and Science Foundation of China (3117175) and Nature and Science Foundation of Zhejiang Province (Y3100609).

Conflict of interests

The authors declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinle Liang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, C., Wu, G., Li, Y. et al. Genome Shuffling of Penicillium citrinum for Enhanced Production of Nuclease P1. Appl Biochem Biotechnol 170, 1533–1545 (2013). https://doi.org/10.1007/s12010-013-0297-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0297-9

Keywords

Navigation