Skip to main content
Log in

Sequence Analysis of KpnI Repeat Sequences to Revisit the Phylogeny of the Genus Carthamus L.

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Repetitive DNA sequences constitute a significant proportion of eukaryotic genomes. Knowledge about the distribution of repetitive DNA sequences is necessary in order to gain insights into the organization, evolution and behavior of eukaryotic genomes. Therefore, we used two repetitive DNA sequences pCtKpnI-I and pCtKpnI-II, earlier reported in Carthamus tinctorius L. to study the phylogeny and to revise the taxonomic status of the taxa belonging to the genus. The study unraveled two major lines within the genus Carthamus; one line included all the diploid taxa (2n = 24) and the other line comprised the taxa with 2n = 20 and the polyploid taxa (2n = 44 and 64). The results of the present study will prove useful in molecular breeding for improving some targeted agronomic traits in genus Carthamus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kellogg, E. A. (1998). Proceedings of the National Academy of Sciences U S A., 95, 2005–2010.

    Article  CAS  Google Scholar 

  2. Leitch, I. J., Chase, M. W., & Bennett, M. D. (1998). Annals of Botany, 82, 85–94.

    Article  CAS  Google Scholar 

  3. Britten R J, Kohne DE (1966). Yearbook of the Carnegie. Institution, Washington 65: 78–106

  4. Britten, R. J., & Kohne, D. E. (1968). Science, 161, 529–540.

    Article  CAS  Google Scholar 

  5. Smith, D. B., & Flavell, R. B. (1974). Biochemical Genetics, 12, 243256.

    Article  Google Scholar 

  6. Flavell, R. B., Rimpau, J., & Smith, D. B. (1977). Chromosoma, 63, 205–222.

    Article  CAS  Google Scholar 

  7. Katsiotis, A., Loukas, M., & Heslop-Harrison, J. S. (2000). Annals of Botany (London), 86, 1135–1142.

    Article  CAS  Google Scholar 

  8. Flavell, R. B. (1980). Annual Reviews of Plant Physiology, 31, 569–596.

    Article  CAS  Google Scholar 

  9. Vershinin, A. V., Alkhimova, A. G., Heslop-Harrison, J. S., Potapova, T. A., & Omelianchuk, N. (2001). Hereditas, 135, 153–160.

    Article  CAS  Google Scholar 

  10. Sharma, S., & Raina, S. N. (2005). Cytogenetic and Genome Research, 109, 15–26.

    Article  CAS  Google Scholar 

  11. Rao SR, Trivedi S, Emmanuel D, Merita K, and Hynniewta M (2010). Journal of Cell and Molecular. Biology 7(2) & 8(1): 1–11.

  12. Navajas-Perez, R., Schwarzacher, T., Herran, R. L. D., Rejon, C. R., Rejon, M. R., & Garrido-Ramos, M. A. (2006). Gene, 368, 61–71.

    Article  CAS  Google Scholar 

  13. Suárez-Santiago, V. N., Salinas, M. J., Garcia-Jacas, N., Soltis, P. S., Soltis, D. E., & Blanca, G. (2007). Molecular Phylogenetics and Evolution, 43, 156–172.

    Article  Google Scholar 

  14. Suárez-Santiago, V. N., Blanca, G., Rejón, M. R., & Garrido-Ramos, M. A. (2007). Gene, 392, 283–290.

    Article  Google Scholar 

  15. Natali, L., Ceccarelli, M., Giordani, T., Sarri, V., Zuccolo, A., Jurman, I., et al. (2008). Genome, 51, 1047–1053.

    Article  CAS  Google Scholar 

  16. Urdampilleta, J. D., Souza, A. P. D., Schneider, D. R. S., Vanzela, A. L. L., Ferrucci, M. S., & Martins, E. F. F. (2009). Genetica, 136(1), 171–177.

    Article  CAS  Google Scholar 

  17. Weiss EA (1971). Leonard Hill Books, London, pp. 529–744.

  18. Ashri, A. (1973). Final Research Report, PL 480, USDA, The Hebrew University of Jerusalem. Rehovot, Israel: Faculty of Agriculture.

    Google Scholar 

  19. Meka, P. K., Tripathi, V., & Singh, R. P. (2007). Journal of Oleo Science, 56(1), 9–12.

    Article  CAS  Google Scholar 

  20. Sehgal, D., & Raina, S. N. (2005). Euphytica, 146, 67–76.

    Article  CAS  Google Scholar 

  21. Sehgal D, Bhat V and Raina SN (2008a). In: Kirti, P.B., (Ed.) Handbook of New Technologies for Genetic Improvement of Grain Legumes, CRC Press, New York, pp. 497–557

  22. Sehgal, D., Rajpal, V. R., & Raina, S. N. (2008). Genome, 51, 638–643.

    Article  CAS  Google Scholar 

  23. Sehgal D, Raina SN (2008c). In: Arya ID, Arya S (eds.) Utilization of Biotechnology in Plant Sciences. Rastogi Press, Meerut, India, pp 39–54

  24. Sehgal, D., Rajpal, V. R., Raina, S. N., Sasanuma, T., & Sasakuma, T. (2009). Genetica, 51, 457–470.

    Article  Google Scholar 

  25. Sehgal, D., Raina, S. N., Devarumath, R. M., Sasanuma, T., & Sasakuma, T. (2009). Molecular Phylogenetics and Evolution, 53, 631–644.

    Article  CAS  Google Scholar 

  26. Sasanuma, T., Sehgal, D., Sasakuma, T., & Raina, S. N. (2008). Genome, 51, 721–727.

    Article  CAS  Google Scholar 

  27. De Candolle, A.P., 1838. Prodromus Systematis Naturalis Regni Vegetabilis 6. Paris

  28. Cassini, H., 1819. Dictionaire de Sciences Naturelles. Paris. Cited by King R., Dawson HW, 1975. Cassini on Compositae. Oriole Editions, New York

  29. Ashri, A., 1957. Ph.D. Thesis. University of California, California, USA.

  30. Knowles, P. F. (1958). Advances in Agronomy, 10, 289–323.

    Article  CAS  Google Scholar 

  31. Ashri, A., & Knowles, P. F. (1960). Agronomy Journal, 52, 11–17.

    Article  Google Scholar 

  32. Hanelt, P. (1961). Zur Kenntnis von Carthanus tinctorius L. Kulturpflanze (in German), 9, 114–145.

    Article  Google Scholar 

  33. Estilai, A. (1977). Acta Ecol. Iran., 2, 70–76.

    Google Scholar 

  34. López-González, G. (1989). Anales del Jardin Botánico de Madrid, 47, 11–34.

    Google Scholar 

  35. Vilatersana, R., Susanna, A., Garcia-Jacas, N., & Garnatje, T. (2000). Plant Systematics and Evolution, 221, 89–105.

    Article  CAS  Google Scholar 

  36. Vilatersana, R., Garnatje, T., Susanna, A., & Garcia-Jacas, N. (2005). Botanical Journal of the Linnean Society, 147, 375–383.

    Article  Google Scholar 

  37. Raina, S. N., Sharma, S., Sasakuma, T., Kishii, M., & Vaishnavi, S. (2005). Journal of Heredity, 96, 424–429.

    Article  CAS  Google Scholar 

  38. Porebski, S., Bailey, L. G., & Baum, B. R. (1997). Plant Molecular Biology Reporter, 15, 8–15.

    Article  CAS  Google Scholar 

  39. Reed, K. C., & Mann, D. A. (1985). Nucleic Acids Research, 13, 7207–7221.

    Article  CAS  Google Scholar 

  40. Goodsell, D. S., & Dickerson, R. E. (1994). Nucleic Acid Research, 22, 5497–5503.

    Article  CAS  Google Scholar 

  41. Saitou, N., & Nei, M. (1987). Molecular and Biological Evolution, 4(4), 406–425.

    CAS  Google Scholar 

  42. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., & Higgins, D. G. (1997). Nucleic Acids Research, 25, 4876–4882.

    Article  CAS  Google Scholar 

  43. Strimmer, K., & Haesler, A. V. (1997). Molecular and Biological Evolution, 13, 964–969.

    Article  Google Scholar 

  44. Swofford DL, (2002). PAUP. Phylogenetic Analysis Using Parsimony (and other methods), version 4. Sinauer Associates, Sunderland, Massachusetts.

  45. Horakova M, Fajkus J (2000). Genome 43: 273–284 hybrids. Agron. J. 52: 11–17

  46. Appels, R., Moran, L. B., & Gustafson, J. P. (1986). Canadian Journal of Genetics and Cytology, 28, 645–657.

    CAS  Google Scholar 

  47. Katsiotis, A., Hagidimitriou, M., Douka, A., & Hatzopoulos, P. (1998). Genome, 41, 527–534.

    CAS  Google Scholar 

  48. Macas, J., Meszaros, T., & Nouzova, M. (2002). Bioinformatics, 18, 28–35.

    Article  CAS  Google Scholar 

  49. Garnatje, T., Garcia, S. N., Vilatersena, R., & Vallee, J. (2006). Annals of Botany, 97, 461–467.

    Article  CAS  Google Scholar 

  50. Vershinin, A. V., Schwarzacher, T., & Heslop-Harrison, J. S. (1995). The Plant Cell, 7, 1823–1833.

    CAS  Google Scholar 

  51. Kulikova, O., Geurts, R., Lamine, M., Kim, D. J., Cook, D. R., Leunissen, J., et al. (2004). Chromosoma, 113, 276–283.

    Article  CAS  Google Scholar 

  52. Koo, H. S., & Crothers, D. M. (1988). Proceedings of the National Academy of Sciences U S A., 85(6), 1763–1767.

    Article  CAS  Google Scholar 

  53. Nagaki, K., Kishii, M., Tsujimoto, H., & Sasakuma, T. (1999). Genome, 42, 1258–1260.

    CAS  Google Scholar 

  54. Gordenin, D. A., Lobachev, K. S., Degtyareva, N. P., Malkova, A. L., Perkins, E., & Resnick, M. A. (2003). Trends in Plant Sciences., 8, 570–575.

    Article  Google Scholar 

  55. Linares, C., Ferrer, E., & Fominaya, A. (1998). Proceedings of the National Academy of Sciences USA, 95, 12450–12455.

    Article  CAS  Google Scholar 

  56. Vershinin, A. V., Svitashev, S., Gummesson, P. O., Salomon, B., Bothmer, R. V., & Bryngelsson, T. (1994). Genet, 89, 217–225.

    CAS  Google Scholar 

  57. Blake, R. D., Wang, J. Z., & Beauregard, L. (1997). Journal of Molecular Evolution, 445, 509–520.

    Article  Google Scholar 

  58. Smith, G. P. (1976). Science, 191, 528–535.

    Article  CAS  Google Scholar 

  59. Friedberg, E. C., Walker, G. C., & Siede, W. (1995). DNA Repair and Mutagenesis. Washington DC: ASM Press.

    Google Scholar 

  60. Tsujimoto, H. (1993). Journal of Plant Research, 106, 239–244.

    Article  CAS  Google Scholar 

  61. Appels, R., & Peacock, W. J. (1971). International Review of Cytology, 8, 69–126.

    Article  Google Scholar 

  62. Ansari, H. A., Ellison, N. W., Griffiths, A. G., & Williams, W. M. (2004). Chromosome Research, 12, 357–367.

    Article  CAS  Google Scholar 

  63. Macas, J., Pozarkova, D., Navratilova, A., Nouzova, M., & Neumann, P. (2000). Molecular and General Genetics, 263, 741–751.

    Article  CAS  Google Scholar 

  64. Dlakic, M., & Harrington, R. E. (1996). Proceedings of the National Academy of Sciences U.S.A, 93, 3847–3852.

    Article  CAS  Google Scholar 

  65. Radic, M. Z., Lundgren, K., & Hamkalo, B. A. (1987). Cell, 50, 1101–1108.

    Article  CAS  Google Scholar 

  66. Hagerman, P. J. (1992). Biochemica Biophysica Acta., 1131, 125–132.

    Article  CAS  Google Scholar 

  67. Simoens, C. R., Gielen, J., Van Montagu, M., & Inzé, D. (1988). Nucleic Acids Research, 16(14), 6753–6766.

    Article  CAS  Google Scholar 

  68. Nagaki, K., Tsujimoto, H., & Sasakuma, T. (1999). Chromosome Research, 6, 95–101.

    Article  Google Scholar 

  69. Felice, B. D., Wilson, R. R., Ciarmiello, L., & Conicella, C. (2004). Journal of Applied Genetics, 35(3), 315–320.

    Google Scholar 

  70. Barragan, M. J. L., Martinez, S., Marchal, J. A., Bullejos, M., Guardia, R. D. D. L., & Bullejos, A. S. (2002). Heredity, 88, 366–370.

    Article  CAS  Google Scholar 

  71. Hanelt, P. (1963). Monographische Ubersicht der Gattung Carthamus L. (Compositae). Feddes Repert, 67, 41–180.

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by Council of Scientific and Industrial Research (CSIR), Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shailendra Goel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehrotra, S., Goel, S., Sharma, S. et al. Sequence Analysis of KpnI Repeat Sequences to Revisit the Phylogeny of the Genus Carthamus L.. Appl Biochem Biotechnol 169, 1109–1125 (2013). https://doi.org/10.1007/s12010-012-0063-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-0063-4

Keywords

Navigation