Skip to main content
Log in

Genomic skimming for identification of medium/highly abundant transposable elements in Arundo donax and Arundo plinii

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Transposable elements (TEs) are the most abundant genetic material for almost all eukaryotic genomes. Their effects on the host genomes range from an extensive size variation to the regulation of gene expression, altering gene function and creating new genes. Because of TEs pivotal contribute to the host genome structure and regulation, their identification and characterization provide a wealth of useful data for gaining an in-depth understanding of host genome functioning. The giant reed (Arundo donax) is a perennial rhizomatous C3 grass, octadecaploid, with an estimated nuclear genome size of 2744 Mbp. It is a promising feedstock for second-generation biofuels and biomethane production. To identify and characterize the most repetitive TEs in the genomes of A. donax and its ancestral A. plinii species, we carried out low-coverage whole genome shotgun sequencing for both species. Using a de novo repeat identification approach, 33,041 and 28,237 non-redundant repetitive sequences were identified and characterized in A. donax and A. plinii genomes, representing 37.55 and 31.68% of each genome, respectively. Comparative phylogenetic analyses, including the major TE classes identified in A. donax and A. plinii, together with rice and maize TE paralogs, were carried out to understand the evolutionary relationship of the most abundant TE classes. Highly conserved copies of RIRE1-like Ty1-Copia elements were discovered in two Arundo spp. in which they represented nearly 3% of each genomic sequence. We identified and characterized the medium/highly repetitive TEs in two unexplored polyploid genomes, thus generating useful information for the study of the genomic structure, composition, and functioning of these two non-model species. We provided a valuable resource that could be exploited in any effort aimed at sequencing and assembling these two genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailly-Bechet M, Haudry A, Lerat E (2014) “One code to find them all”: a perl tool to conveniently parse RepeatMasker output files. Mob DNA 5:13

    Article  PubMed Central  Google Scholar 

  • Baucom RS, Estill JC, Chaparro C, Upshaw N, Jogi A, Deragon JM, Westerman RP, SanMiguel PJ, Bennetzen JL (2009) Exceptional diversity, non-random distribution, and rapid evolution of retroelements in the B73 maize genome. PLoS Genet. doi:10.1371/journal.pgen.1000732

    Google Scholar 

  • Bennett MD, Leitch IJ (2004) Angiosperm DNA C-values database (release 5.0, Dec. 2004). http://www.kew.org/cvalues/homepage.html. Accessed 1 July 2016

  • Bennetzen JL (2005) Transposable elements, gene creation and genome rearrangement in flowering plants. Curr Opin Genet Dev 15:621–627

    Article  CAS  PubMed  Google Scholar 

  • Bennetzen JL, Wang H (2014) The contributions of transposable elements to the structure, function, and evolution of plant genomes. Ann Rev Plant Biol 65:505–530

    Article  CAS  Google Scholar 

  • Bucci A, Cassani E, Landoni M, Cantaluppi E, Pilu R (2013) Analysis of chromosome number and speculations on the origin of Arundo donax L. (Giant Reed). Cytol Genet 47:237–241

    Article  Google Scholar 

  • Claros MG, Bautista R, Guerrero-Fernández D, Benzerki H, Seoane P, Fernández-Pozo N (2012) Why assembling plant genome sequences is so challenging. Biology (Basel) 1:439–459

    Google Scholar 

  • de Setta N, Monteiro-Vitorello CB, Metcalfe CJ, Cruz GM, Del Bem LE, Vicentini R, Nogueira FT, Campos RA, Nunes SL, Turrini PC, Vieira AP, Ochoa Cruz EA, Corrêa TC, Hotta CT, de Mello Varani A, Vautrin S, da Trindade AS, de Mendonça Vilela M, Lembke CG, Sato PM, de Andrade RF, Nishiyama MY Jr, Cardoso-Silva CB, Scortecci KC, Garcia AA, Carneiro MS, Kim C, Paterson AH, Bergès H, D’Hont A, de Souza AP, Souza GM, Vincentz M, Kitajima JP, Van Sluys MA (2014) Building the sugarcane genome for biotechnology and identifying evolutionary trends. BMC Genom 15:540

    Article  Google Scholar 

  • Devos KM, Brown JKM, Bennetzen JL (2002) Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res 12:1075–1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Domingues DS, Cruz GM, Metcalfe CJ, Nogueira FT, Vicentini R, de Salves C, Van Sluys MA (2012) Analysis of plant LTR-retrotransposons at the fine-scale family level reveals individual molecular patterns. BMC Genom 13:137

    Article  CAS  Google Scholar 

  • e Silva CFL, Schirmer MA, Maeda RN, Barcelos CA, Pereira N Jr (2015) Potential of giant reed (Arundo donax L.) for second generation ethanol production. Electron J Biotechnol 18:10–15

    Article  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004(32):1792–1797

    Article  Google Scholar 

  • El Baidouri M, Carpentier MC, Cooke R, Gao D, Lasserre E, Llauro C, Mirouze M, Picault N, Jackson SA, Panaud O (2014) Widespread and frequent horizontal transfers of transposable elements in plants. Genome Res 24:831–838

    Article  PubMed  PubMed Central  Google Scholar 

  • Feschotte C, Pritham EJ (2007) DNA transposons and the evolution of eukaryotic genomes. Ann Rev Genet 41:331–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feschotte C, Jiang N, Wessler SR (2002) Plant transposable elements: where genetics meets genomics. Nat Rev Genet 3:329–341

    Article  CAS  PubMed  Google Scholar 

  • Finnegan DJ (1989) Eukaryotic transposable elements and genome evolution. Trends Genet 5:103–107

    Article  CAS  PubMed  Google Scholar 

  • Gaut BS, Ross-Ibarra J (2008) Selection on major components of angiosperm genomes. Science 320:484–486

    Article  CAS  PubMed  Google Scholar 

  • Gebre YG, Bertolini E, Pè ME, Zuccolo A (2016) Identification and characterizationof abundant repetitive sequences in Eragrostis tef cv. Enatite genome. BMC Plant Biol 16:39

    Article  PubMed  PubMed Central  Google Scholar 

  • Hardion L, Verlaque R, Callmander MW, Vila B (2012a) Arundo micrantha Lam. (Poaceae), the correct name for Arundo mauritanica Desf. and Arundo mediterranea Danin. Candollea 67:131–135

    Article  Google Scholar 

  • Hardion L, Verlaque R, Rbaumel A, Juin M, Vila B (2012b) Revised systematics of Mediterranean Arundo (Poaceae) based on AFLP fingerprints and morphology. Taxon 61:1217–1226

    Google Scholar 

  • Hardion L, Verlaque R, Saltonstall K, Leriche A, Vila B (2014) Origin of the invasive Arundo donax (Poaceae): a trans-Asian expedition in herbaria. Ann Bot 114(3):455–462

    Article  PubMed  PubMed Central  Google Scholar 

  • Hardion L, Verlaque R, Rosato M, Rosselló JA, Vila B (2015) Impact of polyploidy on fertility variation of Mediterranean Arundo L. (Poaceae). Mol Biol Genet 338:298–306

    Google Scholar 

  • Hawkins JS, Kim H, Nason JD, Wing RA, Wendel JF (2006) Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium. Genome Res 16(10):1252–1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hollister JD, Gaut BS (2009) Epigenetic silencing of transposable elements: a trade-off between reduced transposition and deleterious effects on neighboring gene expression. Genome Res 19:1419–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang X, Madan A (1999) CAP 3: a DNA sequence assembly program. Genome Res 9:868–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  Google Scholar 

  • Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J (2005) Repbase update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 110:462–467

    Article  CAS  PubMed  Google Scholar 

  • Jurka J, Bao W, Kojima K, Kapitonov VV (2011) Repetitive elements: bioinformatic identification, classification and analysis. In: Encyclopedia of life sciences (ELS). Wiley, Chichester. doi:10.1002/9780470015902.a0005270.pub2

  • Komolwanich T, Tatijarern P, Prasertwasu S, Khumsupan D, Chaisuwan T, Luengnaruemitchai A, Wongkasemjit S (2014) Comparative potentiality of Kans grass (Saccharum spontaneum) and Giant reed (Arundo donax) as lignocellulosic feedstocks for the release of monomeric sugars by microwave/chemical pretreatment. Cellulose 21:1327–1340

    Article  CAS  Google Scholar 

  • Kumar A, Bennetzen JL (1999) Plant retrotransposons. Ann Rev Genet 33:479–532

    Article  CAS  PubMed  Google Scholar 

  • Lee SI, Kim NS (2014) Transposable elements and genome size variations in plants. Genomics Inform 12:87–97

    Article  PubMed  PubMed Central  Google Scholar 

  • Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658–1659

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Devos KM, Bennetzen JL (2004) Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice. Genome Res 14:860–869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macas J, Neumann P, Navrátilová A (2007) Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula. BMC Genom 8:427

    Article  Google Scholar 

  • Macas J, Kejnovský E, Neumann P, Novák P, Koblížková A, Vyskot B (2011) Next generation sequencing-based analysis of repetitive DNA in the model dioceous plant silene latifolia. PLoS One 6:e27335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marchler-Bauer A et al (2015) CDD: NCBI’s conserved domain database. Nucleic Acids Res 43(Database issue):D222–D226

    Article  PubMed  Google Scholar 

  • Mariani C, Cabrini R, Danin A, Piffanelli P, Fricano A, Gomarasca S, Dicandilo M (2010) Origin, diffusion and reproduction of the giant reed (Arundo donax L.): a promising weedy energy crop. Ann Appl Biol 157(2):191–202

    Article  Google Scholar 

  • McClintock B (1984) The significance of responses of the genome to challenge. Science 226:792–801

    Article  CAS  PubMed  Google Scholar 

  • Mitchell A, Chang HY, Daugherty L, Fraser M, Hunter S, Lopez R, McAnulla C, McMenamin C, Nuka G, Pesseat S et al (2015) The InterPro protein families database: the classification resource after 15 years. Nucleic Acids Res 43(Database issue):D213–D221

    Article  PubMed  Google Scholar 

  • Moisy C, Schulman AH, Kalendar R, Buchmann JP, Pelsy F (2014) The Tvv1 retrotransposon family is conserved between plant genomes separated by over 100 million years. Theor Appl Genet 127:1223–1235

    Article  CAS  PubMed  Google Scholar 

  • Oliver KR, McComb JA, Greene WK (2013) Transposable elements: powerful contributors to angiosperm evolution and diversity. Genome Biol Evol 5:1886–1901

    Article  PubMed  PubMed Central  Google Scholar 

  • Parisod C, Alix K, Just J, Petit M, Sarilar V, Mhiri C, Ainouche M, Chalhoub B, Grandbastien MA (2010) Impact of transposable elements on the organization and function of allopolyploid genomes. New Phytol 186:37–45

    Article  CAS  PubMed  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang L, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DG, Mehboob-ur-Rahman Ware D, Westhoff P, Mayer KF, Messing J, Rokhsar DS (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  CAS  PubMed  Google Scholar 

  • Piegu B, Buyot R, Picault A, Saniyal A, Kim HR, Collura K, Brar DS, Jackson SA, Wing RA, Panaud O (2006) Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome Res 16:1262–1269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pilu R, Cassani E, Landoni M, Badone FC, Passera A, Cantaluppi E, Corno L, Adani F (2014) Genetic characterization of an Italian Giant Reed (Arundo donax L.) clones collection: exploiting clonal selection. Euphytica 196:169–181

    Article  Google Scholar 

  • Poptsova MS, Il’icheva IA, Nechipurenko DY, Panchenko LA, Khodikov MV, Oparina NY, Polozov RV, Nechipurenko YD, Grokhovsky SL (2014) Non-random DNA fragmentation in next-generation sequencing. Sci Rep. 31(4):4532

    Google Scholar 

  • Price AL, Jones NC, Pevzner PA (2005) De novo identification of repeat families in large genomes. Bioinformatics 21:351–358

    Article  Google Scholar 

  • Ragaglini G, Dragoni F, Simone M, Bonari E (2014) Bioresource technology suitability of giant reed (Arundo donax L.) for anaerobic digestion: effect of harvest time and frequency on the biomethane yield potential. Bioresour Technol 152:107–115

    Article  CAS  PubMed  Google Scholar 

  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA, Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, Belter E, Du F, Kim K, Abbott RM, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson SM, Gillam B, Chen W, Yan L, Higginbotham J, Cardenas M, Waligorski J, Applebaum E, Phelps L, Falcone J, Kanchi K, Thane T, Scimone A, Thane N, Henke J, Wang T, Ruppert J, Shah N, Rotter K, Hodges J, Ingenthron E, Cordes M, Kohlberg S, Sgro J, Delgado B, Mead K, Chinwalla A, Leonard S, Crouse K, Collura K, Kudrna D, Currie J, He R, Angelova A, Rajasekar S, Mueller T, Lomeli R, Scara G, Ko A, Delaney K, Wissotski M, Lopez G, Campos D, Braidotti M, Ashley E, Golser W, Kim H, Lee S, Lin J, Dujmic Z, Kim W, Talag J, Zuccolo A, Fan C, Sebastian A, Kramer M, Spiegel L, Nascimento L, Zutavern T, Miller B, Ambroise C, Muller S, Spooner W, Narechania A, Ren L, Wei S, Kumari S, Faga B, Levy MJ, McMahan L, Van Buren P, Vaughn MV, Ying K, Yeh C, Emrich SJ, Jia Y, Kalyanaraman A, Hsia A, Barbazuk WB, Baucom RS, Brutnell TP, Carpita NC, Chaparro C, Chia J, Deragon J, Estill JC, Fu Y, Jeddeloh JA, Han Y, Lee H, Li P, Lisch DR, Liu S, Liu Z, Nagel DH, McCann MC, SanMiguel P, Myers AM, Nettleton D, Nguyen J, Penning BW, Ponnala L, Schneider KL, Schwartz DC, Sharma A, Soderlund C, Springer NM, Sun Q, Wang H, Waterman M, Westerman R, Wolfgruber TK, Yang L, Yu Y, Zhang L, Zhou S, Zhu Q, Bennetzen JL, Dawe RK, Jiang J, Jiang N, Presting GG, Wessler SR, Aluru S, Martienssen RA, Clifton SW, McCombie WR, Wing RA, Wilson RK (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    Article  CAS  PubMed  Google Scholar 

  • Senerchia N, Felber F, Parisod C (2014) Contrasting evolutionary trajectories of multiple retrotransposons following independent allopolyploidy in wild wheats. New Phytol 202:975–985

    Article  CAS  PubMed  Google Scholar 

  • Slotkin RK, Martienssen R (2007) Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 8:272–285

    Article  CAS  PubMed  Google Scholar 

  • Smit A, Hubley R, Green P (1996) RepeatMasker Open-3.0. RepeatMasker Open-3.0. http://www.repeatmasker.org. Accessed 1 July 2016

  • Smýkal P, Kalendar R, Ford R, Macas J, Griga M (2009) Evolutionary conserved lineage of Angela-family retrotransposons as a genome-wide microsatellite repeat dispersal agent. Heredity (Edinb) 103:157–167

    Article  Google Scholar 

  • Sonnhammer EL, Durbin R (1995) A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis. Gene 167:GC1–GC10

    Article  CAS  PubMed  Google Scholar 

  • Spannagl M, Noubibou O, Haase D, Yang L, Gundlach H, Hindemitt T, Klee K, Haberer G, Schoof H, Mayer KF (2007) MIPSPlantsDB—plant database resource for integrative and comparative plant genome research. Nucleic Acids Res 35:D834–D840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka T, Antonio BA, Kikuchi S, Matsumoto T, Nagamura Y, Numa H, Sakai H, Wu J, Itoh T, Sasaki T, Aono R, Fujii Y, Habara T, Harada E, Kanno M, Kawahara Y, Kawashima H, Kubooka H, Matsuya A, Nakaoka H, Saichi N, Sanbonmatsu R, Sato Y, Shinso Y, Suzuki M, Takeda J, Tanino M, Todokoro F, Yamaguchi K, Yamamoto N, Yamasaki C, Imanishi T, Okido T, Tada M, Ikeo K, Tateno Y, Gojobori T, Lin YC, Wei FJ, Hsing YI, Zhao Q, Han B, Kramer MR, McCombie RW, Lonsdale D, O’Donovan CC, Whitfield EJ, Apweiler R, Koyanagi KO, Khurana JP, Raghuvanshi S, Singh NK, Tyagi AK, Haberer G, Fujisawa M, Hosokawa S, Ito Y, Ikawa H, Shibata M, Yamamoto M, Bruskiewich RM, Hoen DR, Bureau TE, Namiki N, Ohyanagi H, Sakai Y, Nobushima S, Sakata K, Barrero RA, Sato Y, Souvorov A, Smith-White B, Tatusova T, An S, An G, OOta S, Fuks G, Fuks G, Messing J, Christie KR, Lieberherr D, Kim H, Zuccolo A, Wing RA, Nobuta K, Green PJ, Lu C, Meyers BC, Chaparro C, Piegu B, Panaud O, Echeverria M (2008) The rice annotation project database (RAP-DB): 2008 update. Nucleic Acids Res 36:D1028–D1033

    CAS  PubMed  Google Scholar 

  • The UniProt Consortium (2015) UniProt: a hub for protein information. Nucleic Acids Res 43:D204–D212

    Article  Google Scholar 

  • Tóth G, Deák G, Barta E, Kiss GB (2006) PLOTREP: a web tool for defragmentation and visual analysis of dispersed genomic repeats. Nucleic Acids Res 34:W708–W713

    Article  PubMed  PubMed Central  Google Scholar 

  • Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982

    Article  CAS  PubMed  Google Scholar 

  • Wicker T, Narechania A, Sabot F, Stein J, Vu GTH, Graner A, Ware D, Stein N (2008) Low-pass shotgun sequencing of the barley genome facilitates rapid identification of genes, conserved non-coding sequences and novel repeats. BMC Genom 9:518

    Article  Google Scholar 

  • Xiong Y, Eickbush TH (1990) Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J 9:3353–3362

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Kobert K, Flouri T, Stamatakis A (2014) PEAR: a fast and accurate illumina paired-end reAd mergeR. Bioinformatics 30:614–620

    Article  CAS  PubMed  Google Scholar 

  • Zuccolo A, Sebastian A, Talag J, Yu Y, Kim H, Collura K, Kudrna D, Wing RA (2007) Transposable element distribution, abundance and role in genome size variation in the genus Oryza. BMC Evol Biol 7:152

    Article  PubMed  PubMed Central  Google Scholar 

  • Zuccolo A, Scofield DG, De Paoli E, Morgante M (2015) The Ty1-copia LTR retroelement family PARTC is highly conserved in conifers over 200 MY of evolution. Gene 568(1):89–99. doi:10.1016/j.gene.2015.05.028

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Zuccolo.

Ethics declarations

Data availability

The raw sequence data used to analyze Arundo spp. were submitted to GenBank under the BioSample Accession Numbers SAMN05853577 and SAMN05853578. Repeat libraries and sequence alignments supporting the conclusions of this research are listed in the “Additional Files” section.

Funding

This project was funded by the Scuola Superiore Sant’Anna, Pisa, Italy (APOMIS11AZ) and by the Doctoral School of Life Sciences of the Scuola Superiore Sant’Anna, Pisa, Italy. We thank Dr. Roberto Pilu from Milan University, Italy, for kindly providing A. donax and A. plinii fresh leaf tissue.

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by S. Hohmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Library Donax_pri_repeat_1610_library: A.donax primary TE library (FA 376 kb)

Library Plinii_pri_repeat_1963_library: A. plinii primary TE library (FA 747 kb)

Library Donax_ctgs_33041_lib: A. donax extended TE library (ZIP 4957 kb)

Library Plinii_ctgs_28237_lib: A. plinii extended TE library (ZIP 3906 kb)

438_2016_1263_MOESM5_ESM.png

Dot plot comparisons of three A. donax repetitive contigs with (a) RIRE1 (complete element) (b) Copia-16_SB (internal region) (c) RLG_sclvana_6_1 (internal region) elements at nucleotide level using Dotter. A copy of 5’ has been added to the 3’ LTR of contig 19571 (PNG 102 kb)

Donax_RIRE1.fsa: complete A. donax RIRE1 like sequence (fsa 8 kb)

438_2016_1263_MOESM7_ESM.meg

Copia_DPMR.meg: multiple alignment of Ty1-Copia RT paralogous sequences identified in Arundo spp., Rice and Maize (MEG 112 kb)

438_2016_1263_MOESM8_ESM.meg

Gypsy_DPMR.meg: multiple alignment of Ty3-Gypsy RT paralogous sequences identified in Arundo spp., Rice and Maize (MEG 161 kb)

438_2016_1263_MOESM9_ESM.pdf

Ty1-Copia-detailed.pdf: NJ tree of Ty1-Copia RT paralogous sequences identified in Arundo spp., Rice and Maize. It shows sequence names (PDF 238 kb)

438_2016_1263_MOESM10_ESM.pdf

Ty3-Gypsy-detailed.pdf: NJ tree of Ty3-Gypsy RT paralogous sequences identified in Arundo spp., Rice and Maize. It shows sequence names (PDF 439 kb)

CACTA.meg: multiple alignment of CACTA paralogous sequences identified in Arundo spp., Rice and Maize (MEG 18 kb)

MuDR.meg: multiple alignment of MuDR paralogous sequences identified in Arundo spp., Rice and Maize (MEG 5 kb)

438_2016_1263_MOESM13_ESM.fa

TE_tracts.fa: multifasta file including the tracts of TE coding domains used as queries in similarity searches to retrieve copies of TE paralogous (FA 1 kb)

438_2016_1263_MOESM14_ESM.pdf

COPIA_ctg.pdf: NJ tree of Ty1-Copia RT paralogous sequences identified in extended repetitive libraries for both Arundo species (PDF 81 kb)

438_2016_1263_MOESM15_ESM.pdf

GYPSY_ctg.pdf: NJ tree of Ty3-gypsy RT paralogous sequences identified in extended repetitive libraries for both Arundo species (PDF 138 kb)

438_2016_1263_MOESM16_ESM.pdf

CACTA_ctg.pdf: NJ tree of CACTA transposase paralogous sequences identified in extended repetitive libraries for both Arundo species (PDF 20 kb)

438_2016_1263_MOESM17_ESM.pdf

MUDR_ctg.pdf: NJ tree of MuDR transposase paralogous sequences identified in extended repetitive libraries for both Arundo species (PDF 9 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lwin, A.K., Bertolini, E., Pè, M.E. et al. Genomic skimming for identification of medium/highly abundant transposable elements in Arundo donax and Arundo plinii . Mol Genet Genomics 292, 157–171 (2017). https://doi.org/10.1007/s00438-016-1263-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-016-1263-3

Keywords

Navigation