Skip to main content
Log in

Decolorization of Synthetic Dyes by Crude and Purified Laccases from Coprinus comatus Grown Under Different Cultures: The Role of Major Isoenzyme in Dyes Decolorization

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Coprinus comatus laccase isoenzyme induction and its effect on decolorization were investigated. The C/N ratio, together with aromatic compounds and copper, significantly influenced laccase isoenzyme profile and enzyme activity. This fungus produced six laccase isoenzymes in high-nitrogen low-carbon cultures but much less in low-nitrogen high-carbon (LNHC) cultures. The highest laccase level (3.25 IU/ml), equivalent to a 12.6-fold increase compared with unsupplemented controls (0.257 IU/ml), was recorded after 13 days in LNHC cultures supplemented with 2.0 mM 2-toluidine. Decolorization of twelve synthetic dyes belonging to anthraquinone, azo, and triphenylmethane dyes, by crude laccases with different proportion of isoenzymes produced under selected culture conditions, illustrated that the LacA is the key isoenzyme contributed to dyes decolorization especially in the presence of 1-hydroxybenzotriazol, which was further confirmed by dyes decolorization with purified LacA in the same condition. The crude laccase only was able to decolorize over 90 % of Reactive Brilliant Blue K-3R, Reactive Dark Blue KR, and Malachite Green, and higher decolorization for broader spectrum of synthetic dyes was obtained in presence of redox mediator, suggesting that C. comatus had high potential to decolorize various synthetic dyes as well as the recalcitrant azo dyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nigam, P., Armour, G., Banat, I. M., Singh, D., & Marchant, R. (2000). Bioresource Technology, 72, 219–226.

    Article  CAS  Google Scholar 

  2. McMullan, G., Meehan, C., Conneely, A., Kirby, N., Robinson, T., Nigam, P., Banat, I. M., Marchant, R., & Smyth, W. F. (2001). Applied Microbiology and Biotechnology, 56, 81–87.

    Article  CAS  Google Scholar 

  3. Levin, L., Melignani, E., & Ramos, A. M. (2010). Bioresour. Technol., 101, 4554–4563.

    CAS  Google Scholar 

  4. Robinson, T., McMullan, G., Marchant, R., & Nigam, P. (2001). Bioresource Technology, 77, 247–255.

    Article  CAS  Google Scholar 

  5. Kokol, V., Doliska, A., Eichlerova, I., Baldrian, P., & Nerud, F. (2007). Enzyme Microb. Technol., 40, 1673–1677.

    CAS  Google Scholar 

  6. Pointing, S. B. (2001). Applied Microbiology and Biotechnology, 57, 20–33.

    Article  CAS  Google Scholar 

  7. Singh Arora, D., & Kumar Sharma, R. (2010). Applied Biochemistry and Biotechnology, 160, 1760–1788.

    Article  Google Scholar 

  8. Campos, R., Kandelbauer, A., Robra, K. H., Cavaco-Paulo, A., & Gubitz, G. M. (2001). Journal of Biotechnology, 89, 131–139.

    Article  CAS  Google Scholar 

  9. Couto, S. R., Sanroman, M., & Gubitz, G. M. (2005). Chemosphere, 58, 417–422.

    Article  Google Scholar 

  10. Saşmaz, S., Gedikli, S., Aytar, P., Güngörmedi, G., Cabuk, A., Hür, E., Unal, A., & Kolankaya, N. (2011). Applied Biochemistry and Biotechnology, 163, 346–361.

    Article  Google Scholar 

  11. Yaver, D. S., & Golightly, E. G. (1996). Gene, 181, 95–102.

    Article  CAS  Google Scholar 

  12. Mansur, M., Suarez, T., & Gonzalez, A. E. (1998). Applied and Environmental Microbiology, 64, 771–774.

    CAS  Google Scholar 

  13. Klonowska, A., Le Petit, J., & Tron, T. (2001). FEMS Microbiology Letters, 200, 25–30.

    Article  CAS  Google Scholar 

  14. Lorenzo, M., Moldes, D., & Sanromán, M. A. (2006). Chemosphere, 63, 912–917.

    Article  CAS  Google Scholar 

  15. Papinutti, L., Dimitriu, P., & Forchiassin, F. (2008). Bioresource Technology, 99, 419–424.

    Article  CAS  Google Scholar 

  16. Lu, X., & Ding, S. (2010). Mycoscience, 51, 68–74.

    Article  CAS  Google Scholar 

  17. Bourbonnais, R., Paice, M. G., Reid, I. D., Lanthier, P., & Yaguchi, M. (1995). Applied and Environmental Microbiology, 61, 1876–1880.

    CAS  Google Scholar 

  18. Tien, M., & Kirk, T. K. (1988). Methods in Enzymology, 6, 238–249.

    Article  Google Scholar 

  19. Saparrat, M., Balatti, P. A., Martínez, M. J., & Jurado, M. (2010). Fungal Biology, 114, 999–1006.

    Article  CAS  Google Scholar 

  20. Dong, J. L., Zhang, Y. W., Zhang, R. H., Huang, W. Z., & Zhang, Y. Z. (2005). Journal of Basic Microbiology, 45, 190–198.

    Article  CAS  Google Scholar 

  21. Xiao, Y. Z., Tu, X. M., Wang, J., Zhang, M., Cheng, Q., Zeng, W. Y., & Shi, Y. Y. (2003). Applied Microbiology and Biotechnology, 60, 700–707.

    CAS  Google Scholar 

  22. Moldes, D., Lorenzo, M., & Sanroman, M. A. (2004). Biotechnology Letters, 26, 327–330.

    Article  CAS  Google Scholar 

  23. Terron, M. C., Gonzalez, T., Carbajo, J. M., Yague, S., Arana-Cuenca, A., Tellez, A., Dobson, A. D. W., & Gonzalez, A. E. (2004). Fungal Genet. O Biologico, 41, 954–962.

    CAS  Google Scholar 

  24. Camarero, S., Ibarra, D., Martínez, M. J., & Martínez, A. T. (2005). Applied and Environmental Microbiology, 71, 1775–1784.

    Article  CAS  Google Scholar 

  25. Zeng, X., Cai, Y., Liao, X., Zeng, X., Li, W., & Zhang, D. (2011). Journal of Hazardous Materials, 187, 517–525.

    Article  CAS  Google Scholar 

  26. Qu, Y., Shi, S., Ma, F., & Yan, B. (2010). Bioresource Technology, 101, 8016–8023.

    Article  CAS  Google Scholar 

  27. Eichlerova, I., Homolka, L., & Nerud, F. (2003). Folia Microbiologica, 48, 775–779.

    Article  CAS  Google Scholar 

  28. Mechichi, T., Mhiri, N., & Sayadi, S. (2006). Chemosphere, 64, 998–1005.

    Article  CAS  Google Scholar 

  29. Susla, M., Novotný, C., & Svobodová, K. (2007). Bioresource Technology, 98, 2109–2115.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a research grant (No. 30871987) from the National Natural Science Foundation of China and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaojun Ding.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, M., Ten, Z. & Ding, S. Decolorization of Synthetic Dyes by Crude and Purified Laccases from Coprinus comatus Grown Under Different Cultures: The Role of Major Isoenzyme in Dyes Decolorization. Appl Biochem Biotechnol 169, 660–672 (2013). https://doi.org/10.1007/s12010-012-0031-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-0031-z

Keywords

Navigation