Skip to main content

Advertisement

Log in

Comparative Performance of Decoupled Input–Output Linearizing Controller and Linear Interpolation PID Controller: Enhancing Biomass and Ethanol Production in Saccharomyces cerevisiae

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A decoupled input–output linearizing controller (DIOLC) was designed as an alternative advanced control strategy for controlling bioprocesses. Simulation studies of its implementation were carried out to control ethanol and biomass production in Saccharomyces cerevisiae and its performance was compared to that of a proportional–integral–derivative (PID) controller with parameters tuned according to a linear schedule. The overall performance of the DIOLC was better in the test experiments requiring the controllers to respond accurately to simultaneous changes in the trajectories of the substrate and dissolved oxygen concentration. It also exhibited better performance in perturbation experiments of the most significant parameters q S,max, q O2,max, and k s , determined through a statistical design of experiments involving 730 simulations. DIOLC exhibited a superior ability of constraining the process when implemented in extreme metabolic regimes of high oxygen demand for maximizing biomass concentration and low oxygen demand for maximizing ethanol concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Costa, J. A. V., & de Morais, M. G. (2011). The role of biochemical engineering in the production of biofuels from microalgae. Bioresource Technology, 102, 2–9.

    Article  CAS  Google Scholar 

  2. Cardona, C. A., & Sánchez, Ó. J. (2007). Fuel ethanol production: process design trends and integration opportunities. Bioresource Technology, 98(12), 2415–2457.

    Article  CAS  Google Scholar 

  3. Kasperski, A., & Miskiewicz, T. (2008). Optimization of pulsed feeding in a Baker’s yeast process with dissolved oxygen concentration as control parameter. Biochemical Engineering Journal, 40, 321–327.

    Article  CAS  Google Scholar 

  4. Astudillo, I. C. P., & Alzate, C. A. C. (2011). Importance of stability study of continuous systems for ethanol production. Journal of Biotechnology, 151, 43–55.

    Article  Google Scholar 

  5. Ostergaard, S., Olsson, L., & Nielsen, J. (2000). Metabolic engineering of Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews, 64(1), 34–50.

    Article  CAS  Google Scholar 

  6. Hisbullah, M. A., & Hussain, K. B. R. (2002). Comparative evaluation of various control schemes for fed-batch fermentation. Bioprocess and Biosystems Engineering, 24, 309–318.

    Article  CAS  Google Scholar 

  7. Yoon, H., Klinzing, G., & Blanch, H. W. (1977). Competition for mixed substrates by microbial populations. Biotechnology and Bioengineering, 19, 1193–1210.

    Article  CAS  Google Scholar 

  8. Menawat, A., Mutharasan, R. & Coughanowr, D. R. (1988). A metabolically structured model of baker’s yeast growth. Ph.D. thesis, Drexel University.

  9. Cooney, C. L., Wang, H. Y., & Wang, D. I. (1977). Computer-aided material balancing for prediction of fermentation parameters. Biotechnology and Bioengineering, 19, 55–67.

    Article  CAS  Google Scholar 

  10. Barford, J. P., & Hall, R. J. (1981). A mathematical model for the aerobic growth of Saccaromyces cerevisiae with a saturated respiratory capacity. Biotechnology and Bioengineering, 28, 1735–1762.

    Article  Google Scholar 

  11. Sonnleitner, B., & Käppeli, O. (2004). Growth of Saccharomyces cerevisiae is controlled by its limited respiratory capacity: formulation and verification of a hypothesis. Biotechnology and Bioengineering, 28(6), 927–937.

    Article  Google Scholar 

  12. Renard, F., & Vande Wouwer, A. (2008). Robust adaptive control of yeast fed-batch cultures. Computers and Chemical Engineering, 32, 1238–1248.

    Article  CAS  Google Scholar 

  13. Gadkar, K., Mehra, S., & Gomes, J. (2005). On-line adaptation of neural networks for bioprocess control. Computers and Chemical Engineering, 29(5), 1047–1057.

    Article  CAS  Google Scholar 

  14. Jones, K. D., & Kompala, D. S. (1999). Cybernetic model of the growth dynamics of Saccharomyces cerevisiae in batch and continuous cultures. Journal of Biotechnology, 71, 105–131.

    Article  CAS  Google Scholar 

  15. Ranjan, A. P., & Gomes, J. (2009). Simultaneous dissolved oxygen and glucose regulation in fed-batch methionine production using decoupled input–output linearizing control. Journal of Process Control, 19, 664–677.

    Article  CAS  Google Scholar 

  16. Cardello, R. J., & San, K. Y. (1988). The design of controllers for batch bioreactors. Biotechnology and Bioengineering, 32(4), 519–526.

    Article  CAS  Google Scholar 

  17. Åström, K. J., & Hägglund, T. (2006). Advanced PID control. ISA—The Instrumentation, Systems, and Automation Society.

  18. Shuler, M. L., & Kargi, F. (2001). Bioprocess engineering: basic concepts (2nd ed.). New Jersey: Prentice Hall.

    Google Scholar 

  19. Levisauskas, D., Simutis, R., Borvitz, D., & Lübbert, A. (1996). Automatic control of the specific growth rate in fed-batch cultivation processes based on an exhaust gas analysis. Bioprocess and Biosystems Engineering, 15(3), 145–150.

    Article  CAS  Google Scholar 

  20. Levisauskas, D. (2001). Inferential control of the specific growth rate in fed-batch cultivation processes. Biotechnology Letters, 23, 1189–1195.

    Article  CAS  Google Scholar 

  21. Dechavanne, V., Barrillat, N., Borlat, F., Hermant, A., Magnenat, L., Paquet, M., & Antonsson, B. (2011). A high-throughput protein refolding screen in 96-well format combined with design of experiments to optimize the refolding conditions. Protein Expression and Purification, 75, 192–203.

    Article  CAS  Google Scholar 

  22. Rathore, A. S., Sharma, C., & Persad, A. (2012). Use of computational fluid dynamics as a tool for establishing process design space for mixing in a bioreactor. Biotechnology Progress, 28, 382–391.

    Google Scholar 

  23. Boyle, D. M., Buckley, J. J., Johnson, G. V., Rathore, A. S., & Gustafson, M. E. (2009). Use of the design-of-experiments approach for the development of a refolding technology for progenipoietin-1, a recombinant human cytokine fusion protein from Escherichia coli inclusion bodies. Applied Biochemistry and Biotechnology, 54, 85–92.

    Article  CAS  Google Scholar 

  24. Plackett, R. L., & Burman, J. P. (1946). The design of optimum multifactorial experiments. Biometrika Trust, 33, 305–325.

    Article  Google Scholar 

  25. De Deken, R. H. (1966). The Crabtree effect: a regulatory system in yeast. Journal of General Microbiology, 44, 149–156.

    Article  Google Scholar 

  26. Fiechter, A., & Seghezzi, W. (1992). Regulation of glucose metabolism in growing yeast cells. Journal of Biotechnology, 27, 27–45.

    Article  CAS  Google Scholar 

  27. Petrik, M., Käppeli, O., & Fiechter, A. (1983). An expanded concept for the glucose effect in the yeast Saccharomyces uvarum: involvement of short- and long-term regulation. Journal of General Microbiology, 129(1), 43–49.

    CAS  Google Scholar 

  28. Cannizzaro, C., Valentinotti, S., & Stockar, U. (2004). Control of yeast fed-batch process through regulation of extracellular ethanol concentration. Bioprocess and Biosystems Engineering, 26, 377–383.

    Article  CAS  Google Scholar 

  29. Kiran, A. U. M., & Jana, A. (2009). Control of continuous fed-batch fermentation process using neural network based model predictive controller. Bioprocess and Biosystems Engineering, 32, 801–808.

    Article  CAS  Google Scholar 

  30. Meleiro, L. A. D. C., Von Zuben, F. J., & Filho, R. M. (2009). Constructive learning neural network applied to identification and control of a fuel-ethanol fermentation process. Engineering Applications of Artificial Intelligence, 22, 201–215.

    Article  Google Scholar 

  31. Bartee, J., Noll, P., Axelrud, C., Schweiger, C., & Sayyar-Rodsari, B. (2009, June). Industrial application of nonlinear model predictive control technology for fuel ethanol fermentation process. In American Control Conference, 2009. ACC’09. IEEE. 2290–2294.

  32. Rodriguez-Acosta, F., Regalado, C. M., & Torres, N. V. (1999). Non-linear optimization of biotechnological processes by stochastic algorithms: application to the maximization of the production rate of ethanol, glycerol and carbohydrates by Saccharomyces cerevisiae. Journal of Biotechnology, 68, 15–28.

    Article  CAS  Google Scholar 

  33. Eslamloueyan, R., & Setoodeh, P. (2011). Optimization of Fed-batch recombinant yeast Fermentation for ethanol production using a reduced dynamic flux balance model based on artificial neural networks. Chemical Engineering Communications, 198, 1309–1338.

    Google Scholar 

Download references

Acknowledgments

The research was supported and funded by grant SR/S3/CF/0029/2010 from Department of Science and Technology, India. VC is a recipient of the CSIR Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Gomes.

Additional information

A. Persad and V. R. Chopda equally contributed to this article.

Appendix

Appendix

The equations for the Sonnleitner and Kappeli model are given below (Eqs. A1A4)

$$ \frac{{dx}}{{dt}} = Y_{{{\rm{bio}}/{\rm{glu}}}}^{{{\rm{oxid}}}}\frac{{{{q}_{{{{O}_{2}},glu\max }}}}}{a}\left( {\frac{{{{c}_{L}}}}{{{{c}_{L}} + {{k}_{o}}}}} \right)x + Y_{{{\rm{bio}}/{\rm{glu}}}}^{{{\rm{red}}}}\left( {{{q}_{S}} - q_{{{{O}_{2}}}}^{{{\rm{oxid}}}}} \right)x + {{Y}_{{{\rm{bio}}/{\rm{ethanol}}}}}{{q}_{{{\rm{ethanol}}}}}x - Dx $$
(A1)
$$ \frac{ds }{dt }=-{q_{{S,\max }}}\frac{s}{{s+{k_s}}}x+D\left( {{s_F}-s} \right) $$
(A2)
$$ \frac{de }{dt }=Y_{\mathrm{ethanol}/\mathrm{glu}}^{\mathrm{red}}\left( {{q_S}-q_{{{O_2}}}^{\mathrm{oxid}}} \right)x-\frac{{{q_{{{O_2},\mathrm{ethanol},\max }}}}}{k}\frac{{{c_L}}}{{{c_L}+{k_o}}}x-De $$
(A3)
$$ \frac{{d{c_L}}}{dt }={k_L}a\left( {c_L^{*}-{c_L}} \right)-{q_{{{{\mathrm{O}}_2}\text{,}\mathrm{glu}\text{,}\max }}}\frac{{{c_L}}}{{{c_L}+{k_o}}}x-{q_{{{{\mathrm{O}}_2}\text{,}\mathrm{ethanol}\text{,}\max }}}\frac{{{c_L}}}{{{c_L}+{k_o}}}x-D{c_L} $$
(A4)

Equation 1 was modified to take into account the minimum of the oxidative flux—flux used by glucose and the ethanol as follows:

\( \frac{dx }{dt }=Y_{\mathrm{bio}/\mathrm{glu}}^{\mathrm{oxid}}\frac{{{q_{{{O_2},glu\max }}}}}{a}(\frac{{{c_L}}}{{{c_L}+{k_o}}})x+Y_{\mathrm{bio}/\mathrm{glu}}^{\mathrm{red}}\left( {{q_S}-q_{{{O_2}}}^{\mathrm{oxid}}} \right)x+{Y_{\mathrm{bio}/\mathrm{eth}}}\frac{{{q_{{{O_2}\text{,}\mathrm{eth},\max }}}}}{k}\left( {\frac{{{c_L}}}{{{c_L}+{k_o}}}} \right)x-Dx \) These equations are then rewritten in the following structural form:

$$ \left[ \begin{array}{*{20}c} {\dot{x}} \hfill \\ {\dot{s}} \hfill \\ {\dot{e}} \hfill \\ {{\dot{c}}_L} \hfill \\\end{array} \right]=\left[ \begin{array}{*{20}c} ({\alpha_1}-{\alpha_3}){\mu_1}(s,{c_L})+{\alpha_2}{\mu_2}(s)+{\alpha_4}{\mu_3}(s,e,{c_L}) \hfill \\ -{\alpha_4}{\mu_2}(s) \hfill \\ -{\alpha_6}{\mu_1}(s,{c_L})+{\alpha_5}{\mu_2}(s)-{\alpha_7}{\mu_3}(s,e,{c_L}) \hfill \\ -{\mu_1}(s,{c_L})-{\mu_3}(s,e,{c_L}) \hfill \\\end{array} \right]x+\left[ {\begin{array}{*{20}c} {-x} \hfill & 0 \hfill \\ {{s_F}-s} \hfill & 0 \hfill \\ {-e} \hfill & 0 \hfill \\ {-{c_L}} \hfill & {c_L^{*}-{c_L}} \hfill \\ \end{array}} \right]\left[ {\begin{array}{*{20}c} D \\ {{k_L}a} \\ \end{array}} \right] $$
(A5)

Where, the kinetic structures are given by \( {\mu_1}\left( {s,{c_L}} \right)={q_{{{O_2},glu,\max }}}\frac{{{c_L}}}{{{c_L}+{k_o}}} \), \( {\mu_2}(s)=\frac{s}{{s+{k_s}}} \) and \( {\mu_3}(s,e,{c_L})={q_{{{O_2},\mathrm{ethanol},\max }}}\frac{{{c_L}}}{{{c_L}+{k_o}}} \). Similarly, the parameters were defined as given below:

$$ {\alpha_1}=\frac{{Y_{\mathrm{bio}/\mathrm{glu}}^{\mathrm{oxid}}}}{a},{\alpha_2}=Y_{\mathrm{bio}/\mathrm{glu}}^{\mathrm{red}}q_{\mathrm{sub}}^{\max },{\alpha_3}=\frac{{Y_{\mathrm{bio}/\mathrm{glu}}^{\mathrm{red}}}}{a},{\alpha_4}=\frac{{{Y_{\mathrm{bio}/\mathrm{eth}}}}}{k},{\alpha_5}=Y_{\mathrm{eth}/\mathrm{glu}}^{\mathrm{red}}q_{\mathrm{sub}}^{\max },{\alpha_6}=\frac{{Y_{\mathrm{eth}/\mathrm{glu}}^{\mathrm{red}}}}{a} $$

And \( {\alpha_7}=\frac{1}{k} \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Persad, A., Chopda, V.R., Rathore, A.S. et al. Comparative Performance of Decoupled Input–Output Linearizing Controller and Linear Interpolation PID Controller: Enhancing Biomass and Ethanol Production in Saccharomyces cerevisiae . Appl Biochem Biotechnol 169, 1219–1240 (2013). https://doi.org/10.1007/s12010-012-0011-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-0011-3

Keywords

Navigation