Skip to main content
Log in

Control of yeast fed-batch process through regulation of extracellular ethanol concentration

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

At high growth rates, the biomass yield of baker’s yeast (Saccharomyces cerevisiae) decreases due to the production of ethanol. For this reason, it is standard industrial practice to use a fed-batch process whereby the specific growth rate, μ, is fixed at a level below the point of ethanol production, i.e., μcrit. Optimally, growth should be maintained at μcrit, but in practice, this is difficult because μcrit is dependent upon strain and culture conditions. In this work, growth was maintained at a point just above μcrit by regulating ethanol concentration in the bioreactor. The models used for control design are shown, as are the experimental results obtained when this strategy was implemented. This technique should be applicable to all microorganisms that exhibit an “overflow” type metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ejiofor AO, Solomon BO, Posten C, Deckwer WD (1994) Analysis of the respiro-fermentative growth of Saccharomyces cerevisiae on glucose in a fed-batch fermentation strategy for accurate parameter estimation. Appl Microbiol Biotechnol 41:664–669

    Article  CAS  Google Scholar 

  2. van Hoek P, van Dijken JP, Pronk JT (1998) Effect of specific growth rate on fermentative capacity of Baker’s yeast. Appl Environ Microbiol 64:4226–4233

    PubMed  Google Scholar 

  3. Xu B, Jahic M, Enfors SO (1999) Modeling of overflow metabolism in batch and fed-batch cultures of Escherichia coli. Biotechnol Prog 15:81–90

    Article  PubMed  Google Scholar 

  4. Valentinotti S, Holmberg U, Srinivasan B, Cannizzaro C, Rhiel M, von Stockar U, Bonvin D (2002) Optimal operation of fed-batch fermentations via adaptive control of overflow metabolite. Control Eng Pract 11(6):665–674

    Article  Google Scholar 

  5. Axelsson JP (1988) Experimental techniques and data treatment for studying the dynamics of ehanol production/consumption in baker’s yeast. Anal Chim Acta 213:151–163

    Article  CAS  Google Scholar 

  6. Turner C, Gregory ME, Thornhill NF (1994) Closed-loop control of fed-batch cultures of recombinant Escherichia coli using on-line HPLC. Biotechnol Bioeng 44:819–829

    CAS  Google Scholar 

  7. Rank M, Gram J, Nielsen KS, Danielsson B (1995) Online monitoring of ethanol, acetaldehyde and glycerol during industrial fermantations with Saccharomyces cerevisiae. Appl Micorbiol Biotechnol 42:813–817

    Article  CAS  Google Scholar 

  8. Noronha SB, Wagner LW, Matheson NH, Shiloach J (1999) Use of an ethanol sensor for feedback control of growth and expression of Tbv25H in Saccharomyces cerevisiae. Biotechnol Bioeng 63285–289

  9. Locher G, Sonnleitner B (1992) On-line measurement in biotechnology: techniques. J Biotechnol 25:23–53

    Article  CAS  PubMed  Google Scholar 

  10. Polakovic M, Mandenius CF (1994) Evaluation of sensors for the control of a contiuous ethanol fermentation. Bioprocess Eng 10:217–223

    Article  CAS  Google Scholar 

  11. Kellerhals MB, Kessler B, Witholt B (1999) Closed-loop control of bacterial high-cell-density fed-batch cultures—production of mcl-PHAs by Pseudomonas putida KT2442 under single-substrate and cofeeding conditions. Biotechnol Bioeng 65:306–315

    Article  CAS  PubMed  Google Scholar 

  12. Hall JW, McNeil B, Rollins MJ, Draper I, Thompson BG, Macaloney G (1996) Near-infrared spectroscopic determination of acetate, ammonium, biomass, and glycerol in an industrial Escherichia coli fermentation. Appl Spectrosc 50:102–108

    CAS  Google Scholar 

  13. Yano T, Aimi T, Nakano Y, Tamai M (1997) Prediction of the concentrations of ethanol and acetic acid in the culture broth of a rice vinegar fementation using near-infrared spectroscopy. J Ferment Bioeng 84:461–465

    Article  CAS  Google Scholar 

  14. Faxolle P, Picque D, Corrieu G (2000) On-line monitoring of fermentation processes by a new remote disperisve middle-infrared spectrometer. Food Control 11:291–296

    Article  Google Scholar 

  15. Rhiel M, Cohen MB, Murhammer DW, Arnold MA (2002) Nondestructive near-infrared spectroscopic measurement of multiple analytes in undiluted samples of serum-based cell culture medium. Biotechnol Bioeng 77:73–82

    Article  CAS  PubMed  Google Scholar 

  16. Kornmann H, Rhiel M, Cannizzaro C, Marison I, von Stockar U (2003) Methodology for real-time multi-analyte monitoring of fermentations using an in situ mid-infrared sensor. Biotechnol Bioeng 82:702–709

    Article  CAS  PubMed  Google Scholar 

  17. Phelps MR, Hobbs JB, Kilburn DG, Turner RFB (1995) an autoclavable glucose biosensor for microbial fermentation monitoring and control. Biotechnol Bioeng 46:514–524

    CAS  Google Scholar 

  18. Buttler T, Liden H, Jonsson JA, Gorton L, Markovarga G, Jeppsson H (1996) Evaluation of detection and sample cleanup techniques for on-line and off-line fermentation monitoring systems. Anal Chim Acta 324:103–113

    Article  CAS  Google Scholar 

  19. Wild R, Citterio D, Spichiger J, Spichiger UE (1996) Continuous monitoring of ethanol for bioprocess control by a chemical sensor. J Biotechnol 50:37–46

    Article  CAS  Google Scholar 

  20. Srinivasan N, Kasthurikrishnan N, Cooks RG, Krishnan MS, Tsao GT (1995) On-line monitoring with feedback control of bioreactors using a high ethanol tolerance yeast by membrane introduction mass spectrometry. Anal Chim Acta 316:269–276

    Article  CAS  Google Scholar 

  21. Meyer C, Beyeler W (1984) Control strategies for continous bioprocesses based on biological activities. Biotechnol Bioeng 26:916–925

    CAS  Google Scholar 

  22. Zigova J, Mahle M, Paschold H, Malissard M, Berger EG, Weusterbotz D (1999) Fed-batch production of a soluble beta-1,4-galactosyltransferase with Saccharomyces cerevisiae. Enz Microb Technol 25:201–207

    Article  CAS  Google Scholar 

  23. Randolph TW, Marison IW, Martens DE, von Stockar U (1990) Calorimetric control of fed-batch fermentations. Biotechnol Bioeng 36:678–684

    CAS  Google Scholar 

  24. Larsson C, Lidén G, Niklasson C, Gustafsson L (1991) Calorimetric control of fed-batch cultures of Saccharomyces cerevisiae. Bioprocess Eng 7:151–155

    CAS  Google Scholar 

  25. Larsson C, Lidén G, Blomberg A, Niklasson C, Gustafsson L (1993) Monitoring and control of batch and fed-batch cultures of Saccharomyces cerevisiae by calorimetry. Pure Appl Chem 65:1933–1937

    CAS  Google Scholar 

  26. Duboc P, Cascao Pereira LG, von Stockar U (1998) Identification and control of oxidative metabolism in Saccharomyces cerevisiae during transient growth using calorimetric measurements. Biotechnol Bioeng 57:610–619

    Article  CAS  PubMed  Google Scholar 

  27. Voisard D, Pugeaud P, Kumar AR, Jenny K, Jayaraman K, Marison IW, von Stockar U (2002) Development of a large scale biocalorimeter to monitor and control bioprocesses. Biotechnol Bioeng 80:125–138

    Article  CAS  PubMed  Google Scholar 

  28. Ringbom K, Rothberg A, Saxen B (1996) Model-based automation of baker’s yeast production. J Biotechnol 51:73–82

    Article  CAS  PubMed  Google Scholar 

  29. Jobe A, Herwig C, Surzyn M, Walker B, Marison I, von Stockar U (2003) A generally applicable fed-batch culture concept based on the detection of metabolic state by on-line balancing. Biotechnol Bioeng (in press)

  30. Sonnleitner B, Kappeli O (1986) Growth of Saccharomyces cerevisiae is controlled by its limited respiratory capacity: formulation and verification of a hypothesis. Biotechnol Bioeng 28:927–937

    CAS  Google Scholar 

  31. Valentinotti S (2001) Adaptive rejection of unstable disturbances: Application to fed-batch fermantation process. Thèse N° 2405. Swiss Federal Institute of Technology

    Google Scholar 

  32. Verduyn C, Postma E, Sheffers WA, van Dijken JP (1992) Effect of benzoic acid on metabolic fluxes in yeasts: a continuous culture study on the regulation of respiration and alcoholic fermentation. Yeast 8:501–517

    CAS  PubMed  Google Scholar 

  33. Vicente A, Castrillo JI, Teixeira JA, Ugalde U (1998) Online estimation of biomass through pH control analysis in aerobic yeast fermentation systems. Biotechnol Bioeng 58:445–450

    Article  CAS  PubMed  Google Scholar 

  34. Duboc P, Marison I, Von Stockar U (1996) Physiology of Saccharomyces cerevisiae during cell cycle oscillations. J Biotechnol 51:57–72

    Article  CAS  PubMed  Google Scholar 

  35. Duboc P, von Stockar U (1998) Systematic errors in data evaluation due to ethanol stripping and water vaporization. Biotechnol Bioeng 58:428–439

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Funding by the Swiss National Science Foundation is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urs von Stockar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cannizzaro, C., Valentinotti, S. & von Stockar, U. Control of yeast fed-batch process through regulation of extracellular ethanol concentration. Bioprocess Biosyst Eng 26, 377–383 (2004). https://doi.org/10.1007/s00449-004-0384-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-004-0384-y

Keywords

Navigation