Skip to main content

Advertisement

Log in

Robust Optimal Control of a Microbial Batch Culture Process

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This paper considers the microbial batch culture process for producing 1,3-propanediol (1,3-PD) via glycerol fermentation. Our goal was to design an optimal control scheme for this process, with the aim of balancing two (perhaps competing) objectives: (i) the process should yield a sufficiently high concentration of 1,3-PD at the terminal time and (ii) the process should be robust with respect to changes in various uncertain system parameters. Accordingly, we pose an optimal control problem, in which both process yield and process sensitivity are considered in the objective function. The control variables in this problem are the terminal time of the batch culture process and the initial concentrations of biomass and glycerol in the batch reactor. By performing a time-scaling transformation and introducing an auxiliary dynamic system to calculate process sensitivity, we obtain an equivalent optimal control problem in standard form. We then develop a particle swarm optimization algorithm for solving this equivalent problem. Finally, we explore the trade-off between process efficiency and process robustness via numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Biebl, H., Menzel, K., Zeng, A.P., Deckwer, W.D.: Microbial production of 1,3-propanediol. Appl. Microbiol. Biot. 52, 289–297 (1999)

    Article  Google Scholar 

  2. Gtinzel, B.: Mikrobielle herstellung von 1,3-propandiol durch clostridium butyricum und adsorptive abtremutng von diolen. Ph.D. Dissertation, TU Braunschweig, Germany (1991)

  3. Sun, Y.Q., Qi, W.T., Teng, H., Xiu, Z.L., Zeng, A.P.: Mathematical modeling of glycerol fermentation by Klebsiella pneumoniae: concerning enzyme-catalytic reductive pathway and transport of glycerol and 1,3-propanediol across cell membrane. Biochem. Eng. J. 38, 22–32 (2008)

    Article  Google Scholar 

  4. Gao, C.X., Wang, Z.T., Feng, E.M., Xiu, Z.L.: Parameter identification and optimization of process for bio-dissimilation of glycerol to 1,3-propanediol in batch culture. J. Dalian Univ. Technol. 46, 771–774 (2006)

    Google Scholar 

  5. Li, X.H., Feng, E.M., Xiu, Z.L.: Optimal control and property of nonlinear dynamic system for microorganism in batch culture. Oper. Res. Trans. 9, 89–96 (2005)

    Google Scholar 

  6. Wang, L., Feng, E.M., Ye, J.X., Xiu, Z.L.: An improved model for multistage simulation of glycerol fermentation in batch culture and its parameter identification. Nonlinear Anal. Hybrid Syst. 3, 455–462 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Zeng, A.P., Rose, A., Biebl, H.: Multiple product inhibition and growth modeling of Clostridium butyricum and Klebsiella pneumonia in fermentation. Biotechnol. Bioeng. 44, 902–911 (1994)

    Article  Google Scholar 

  8. Zeng, A.P., Biebl, H.: Bulk-chemicals from biotechnology: the case of microbial production of 1,3-propanediol and the new trends. Adv. Biochem. Eng. Biot. 74, 237–433 (2002)

    Google Scholar 

  9. Gong, Z.H., Liu, C.Y., Feng, E.M., Zhang, Q.R.: Computational method for inferring objective function of glycerol metabolism in Klebsiella pneumonia. Comput. Biol. Chem. 33, 1–6 (2008)

    Article  Google Scholar 

  10. Zhang, Q.R., Xiu, Z.L.: Metabolic pathway analysis of glycerol metabolism in Klebsiella pneumonia incorporating oxygen regulatory system. Biotechnol. Progr. 25, 103–115 (2009)

    Article  Google Scholar 

  11. Wang, L.: Determining the transport mechanism of an enzyme-catalytic complex metabolic network based on biological robustness. Bioproc. Biosyst. Eng. 36, 433–441 (2013)

    Article  Google Scholar 

  12. Yuan, J.L., Zhang, X., Zhu, X., Feng, E.M., Xiu, Z.L., Yin, H.C.: Modeling and pathway identification involving the transport mechanism of a complex metabolic system in batch culture. Commun. Nonlinear Sci. Numer. Simul. 19, 2088–2103 (2014)

    Article  MathSciNet  Google Scholar 

  13. Yuan, J.L., Zhu, X., Zhang, X., Feng, E.M., Xiu, Z.L., Yin, H.C.: Robust identification of enzymatic nonlinear dynamical systems for 1,3-propanediol transport mechanisms in microbial batch culture. Appl. Math. Comput. 232, 150–163 (2014)

    Article  MathSciNet  Google Scholar 

  14. Wang, J., Sun, Q.Y., Feng, E.M.: Modeling and properties of a nonlinear autonomous switching system in fed-batch culture of glycerol. Commun. Nonlinear Sci. Numer. Simul. 17, 4446–4454 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  15. Zeng, A.P., Deckwer, W.D.: A kinetic model for substrate and energy consumption of microbial growth under substrate-sufficient conditions. Biotechnol. Progr. 11, 71–79 (1995)

    Article  Google Scholar 

  16. Gao, C.X., Feng, E.M., Wang, Z.T., Xiu, Z.L.: Parameters identification problem of the nonlinear dynamical system in microbial continuous cultures. Appl. Math. Comput. 169, 476–484 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Xiu, Z.L., Zeng, A.P., An, L.J.: Mathematical modeling of kinetics and research on multiplicity of glycerol bioconversion to 1,3-propanediol. J. Dalian Univ. Technol. 40, 428–433 (2000)

    Google Scholar 

  18. Liu, C.Y.: Sensitivity analysis and parameter identification for a nonlinear time-delay system in microbial fed-batch process. Appl. Math. Model. 38, 1449–1463 (2014)

    Article  MathSciNet  Google Scholar 

  19. Liu, C.Y.: Modeling and parameter identification for a nonlinear time-delay system in microbial batch fermentation. Appl. Math. Model. 37, 6899–6908 (2013)

    Article  MathSciNet  Google Scholar 

  20. Wang, G., Feng, E.M., Xiu, Z.L.: Vector measure for explicit nonlinear impulsive system of glycerol bioconversion in fed-batch cultures and its parameter identification. Appl. Math. Comput. 188, 1151–1160 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Rehbock, V., Teo, K.L., Jennings, L.S.: A computational procedure for suboptimal robust controls. Dynam. Control 2, 331–348 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  22. Wei, W., Teo, K.L., Zhan, Z.: A numerical method for an optimal control problem with minimum sensitivity on coefficient variation. Appl. Math. Comput. 218, 1180–1190 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  23. Loxton, R.C., Teo, K.L., Rehbock, V.: Robust suboptimal control of nonlinear systems. Appl. Math. Comput. 217, 6566–6576 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  24. Loxton, R.C., Teo, K.L., Rehbock, V., Yiu, K.F.C.: Optimal control problems with a continuous inequality constraint on the state and the control. Autom. J. IFAC 45, 2250–2257 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  25. Loxton, R.C., Teo, K.L., Rehbock, V., Ling, W.K.: Optimal switching instants for a switched-capacitor DC/DC power converter. Autom. J. IFAC 45, 973–980 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  26. Loxton, R.C., Teo, K.L., Rehbock, V.: Optimal control problems with multiple characteristic time points in the objective and constraints. Autom. J. IFAC 44, 2923–2929 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  27. Gao, C.X., Wang, Z.T., Feng, E.M., Xiu, Z.L.: Nonlinear dynamical systems of bio-dissimilation of glycerol to 1,3-propanediol and their optimal controls. J. Ind. Manag. Optim. 1, 377–388 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  28. Wang, L., Feng, E.M., Xiu, Z.L.: Modeling nonlinear stochastic kinetic system and stochastic optimal control of microbial bioconversion process in batch culture. Nonlinear Anal. Model. Control 18, 99–111 (2013)

    MATH  MathSciNet  Google Scholar 

  29. Chai, Q., Loxton, R., Teo, K.L., Yang, C.: A unified parameter identification method for nonlinear time-delay systems. J. Ind. Manag. Optim. 9, 471–486 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  30. Lin, Q., Loxton, R., Teo, K.L.: The control parameterization method for nonlinear optimal control: a survey. J. Ind. Manag. Optim. 10, 275–309 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  31. Liu, C.Y., Loxton, R., Teo, K.L.: Optimal parameter selection for nonlinear multistage systems with time-delays. Comput. Optim. Appl. (2014). doi:10.1007/s10589-013-9632-x

    MathSciNet  Google Scholar 

  32. Lin, Q., Loxton, R.C., Xu, C., Teo, K.L.: State-delay estimation for nonlinear systems using inexact output data. In: Proceedings of the Chinese Control Conference, July 2014

  33. Gao, W.F., Liu, S.Y., Huang, L.L.: Particle swarm optimization with chaotic opposition-based population initialization and stochastic search technique. Commun. Nonlinear Sci. Numer. Simul. 17, 4316–4327 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  34. Gandomi, A.H., Yun, G.J., Yang, X.S., Talatahari, S.: Chaos-enhanced accelerated particle swarm optimization. Commun. Nonlinear Sci. Numer. Simul. 18, 327–340 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  35. Zhang, J., Zhang, C., Chu, T., Perc, M.: Resolution of the stochastic strategy spatial prisoner’s dilemma by means of particle swarm optimization. PLoS One 6, e21787 (2011)

    Article  Google Scholar 

  36. Ma, G., Zhou, W., Chang, X.L.: A novel particle swarm optimization algorithm based on particle migration. Appl. Math. Comput. 218, 6620–6626 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  37. Kennedy J., Eberhart R.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, Nov–Dec 1995

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11171050, 11101262, and 11371164) and the National Natural Science Foundation for the Youth of China (Grant Nos. 11301081, 11401073).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Wang.

Additional information

Communicated by Mimmo Iannelli.

Appendix

Appendix

The explicit formulas for the derivatives of \(\tilde{\mu }\) in (20)–(21) are given below.

$$\begin{aligned} \frac{\partial \tilde{\mu }(\tau )}{\partial \sigma _1}&=-\mu _m\frac{\tilde{x}_2(\tau )}{(\tilde{x}_2(\tau )+k_2)^2}\prod _{i=2}^5\Big (1-\frac{\tilde{x}_i(\tau )}{x_i^*}\Big ),\quad \quad \frac{\partial \tilde{\mu }(\tau )}{\partial \sigma _k}=0,\quad k=2,3,\ldots ,9,\\ \frac{\partial \tilde{\mu }(\tau )}{\partial x_1}&=0, \quad \quad \frac{\partial \tilde{\mu }(\tau )}{\partial x_2}=\mu _m\left[ \displaystyle \frac{k_2}{(\tilde{x}_2(\tau )+k_2)^2}\left( 1-\displaystyle \frac{\tilde{x}_2(\tau )}{x_2^*}\right) -\displaystyle \frac{\tilde{x}_2(\tau )}{x_2^*(\tilde{x}_2(\tau )+k_2)}\right] \\&\qquad \qquad \qquad \qquad \qquad \quad \prod _{i=3}^5\Big (1-\displaystyle \frac{\tilde{x}_i(\tau )}{x_i^*}\Big ),\\ \frac{\partial \tilde{\mu }(\tau )}{\partial x_j}&=-\mu _m\displaystyle \frac{\tilde{x}_2(\tau )}{x_j^*(\tilde{x}_2(\tau )+k_2)}\prod ^5_{i=2,i\ne j} \Big (1-\displaystyle \frac{\tilde{x}_i(\tau )}{x_i^*}\Big ),\quad j=3,4,5. \end{aligned}$$

The explicit formulas for the derivatives of \(\tilde{q}_2\) in (20)–(21) are given below.

$$\begin{aligned} \frac{\partial \tilde{q}_2(\tau )}{\partial \sigma _1}&=\frac{1}{Y_2}\frac{\partial \tilde{\mu }(\tau )}{\partial \sigma _1},\quad \quad \frac{\partial \tilde{q}_2(\tau )}{\partial \sigma _2}=1, \quad \quad \frac{\partial \tilde{q}_2(\tau )}{\partial \sigma _6}=-\frac{\tilde{\mu }(\tau )}{Y_2^2}, \quad \quad \frac{\partial \tilde{q}_2(\tau )}{\partial \sigma _k}=0,\\&k=3,4,5,7,8,9,\\ \frac{\partial \tilde{q}_2(\tau )}{\partial x_1}&=0, \quad \quad \frac{\partial \tilde{q}_2(\tau )}{\partial x_2}=\frac{1}{Y_2}\frac{\partial \tilde{\mu }(\tau )}{\partial x_2},\quad \quad \frac{\partial \tilde{q}_2(\tau )}{\partial x_j}=\frac{1}{Y_2}\frac{\partial \tilde{\mu }(\tau )}{\partial x_j},\quad j=3,4,5. \end{aligned}$$

The explicit formulas for the derivatives of \(\tilde{q}_i\), \(i=3,4,5\), in (20)–(21) are given below.

$$\begin{aligned} \displaystyle \frac{\partial \tilde{q}_i(\tau )}{\partial \sigma _k}= \left\{ \begin{array}{ll} Y_i\displaystyle \frac{\partial \tilde{\mu }(\tau )}{\partial \sigma _1},\quad \quad ~~~~ &{} \text{ if }\quad k=1,\\ 1, \quad \quad \quad \quad \quad \quad ~ &{} \text{ if } \quad \sigma _k=m_{i},\\ \tilde{\mu }(\tau ),\quad \quad \quad \quad ~~~ &{} \text{ if } \quad \sigma _k=Y_i,\\ 0,\quad \quad \quad \quad \quad \quad \ &{} \text{ otherwise, } \end{array} \right. \\ \end{aligned}$$
$$\begin{aligned} \frac{\partial \tilde{q}_i(\tau )}{\partial x_1}&=0, \quad \quad \frac{\partial \tilde{q}_i(\tau )}{\partial x_2}={Y_i}\frac{\partial \tilde{\mu }(\tau )}{\partial x_2},\quad \quad \frac{\partial \tilde{q}_i(\tau )}{\partial x_j}=Y_i\frac{\partial \tilde{\mu }(\tau )}{\partial x_j},\quad j=3,4,5. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, G., Wang, L., Loxton, R. et al. Robust Optimal Control of a Microbial Batch Culture Process. J Optim Theory Appl 167, 342–362 (2015). https://doi.org/10.1007/s10957-014-0654-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-014-0654-z

Keywords

Mathematics Subject Classification

Navigation