Skip to main content
Log in

Optimization of Factors Influencing Microinjection Method for Agrobacterium tumefaciens-Mediated Transformation of Tomato

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A simple and efficient protocol for Agrobacterium-mediated genetic transformation of tomato was developed using combination of non-tissue culture and micropropagation systems. Initially, ESAM region of 1-day-old germinated tomato seeds were microinjected for one to five times with Agrobacterium inoculums (OD600 = 0.2–1.0). The germinated seeds were cocultivated in the MS medium fortified with (0–200 mM) acetosyringone and minimal concentrations of (0–20 mg L−1) kanamycin, and the antibiotic concentration was doubled during the second round of selection. Bacterial concentration of OD600 = 0.6 served as an optimal concentration for infection and the transformation efficiency was significantly higher of about 46.28 %. In another set of experiment, an improved and stable regeneration system was adapted for the explants from the selection medium. Four-day-old double cotyledonary nodal explants were excised from the microinjected seedlings and cultured onto the MS medium supplemented with 1.5 mg L−1 thidiazuron, 1.5 mg L−1 indole-3-butyric acid, 30 mg L−1 kanamycin, and 0–1.5 mg L−1 adenine sulphate. Maximum of 9 out of 13 micropropagated shoots were shown positive to GUS assay. By this technique, the transformation efficiency was increased from 46.28 to 65.90 %. Thus, this paper reports the successful protocol for the mass production of transformants using microinjection and micropropagation techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bhatia, P., Ashwath, N., Senaratna, T., & Midmore, D. (2004). Plant Cell Tissue and Organ Culture, 78, 1–21.

    Article  Google Scholar 

  2. Jia, G. X., Zhu, Z. Q., Chang, F. Q., & Li, Y. (2002). Plant Cell Reports, 21, 141–146.

    Article  CAS  Google Scholar 

  3. Wang, J., Sun, Y., & Li, Y. (2007). Biotechnololgy and Applied Biochemistry, 46, 51–55.

    Article  CAS  Google Scholar 

  4. Van, D. T., Ferro, N., & Jacobsen, H.-J. (2010). GM Crops, 1–5, 312–321.

    Article  Google Scholar 

  5. McCormick, S., Niedermeyer, J., Fry, J., Barnason, A., Horsch, R., & Fraley, R. (1986). Plant Cell Reports, 5, 81–84.

    Article  CAS  Google Scholar 

  6. Ellul, P., Garcia-Sogo, B., Pineda, B., Rios, G., Roig, L. A., & Moreno, V. (2003). Theoretical and Applied Genetics, 106, 231–238.

    CAS  Google Scholar 

  7. Ling, H. Q., Kriseleit, D., & Ganal, M. W. (1998). Plant Cell Reports, 17, 843–847.

    Article  CAS  Google Scholar 

  8. Fillati, J. J., Kiser, J., Ronald, R., & Comai, L. (1987). Biotechnology, 5, 726–730.

    Article  Google Scholar 

  9. Hamza, S., & Chupeau, Y. (1993). Journal of Experimental Botany, 44, 1837–1845.

    Article  CAS  Google Scholar 

  10. Pfitzner, A. J. P. (1998). Methods in Molecular Biology, 81, 359–363.

    CAS  Google Scholar 

  11. Shivakumar, B., Mythili, J. B., Anand, L., & Saiprasad, G. V. S. (2007). Indian Journal of Horticulture, 64, 251–257.

    Google Scholar 

  12. Gao, N., Shen, W., Cao, Y., Su, Y., & Shi, W. (2009). Plant Cell Tissue and Organ Culture, 98, 321–330.

    Article  CAS  Google Scholar 

  13. Ohki, S., Bigot, C., & Mousseau, J. (1978). Plant & Cell Physiology, 19, 27–42.

    CAS  Google Scholar 

  14. Chyi, Y. S., & Phillips, G. C. (1987). Plant Cell Reports, 6, 105–108.

    CAS  Google Scholar 

  15. Bird, C. R., Smith, C. J. S., Ray, J. A., Moureau, P., Bevan, M. J., Birds, A. S., Hughes, S., Morris, P. C., Grierson, D., & Schuch, W. (1988). Plant Molecular Biology, 11, 651–662.

    Article  CAS  Google Scholar 

  16. Davis, M. R., & Miller, L. D. (1991). Journal of Experimental Botany, 42, 359–364.

    Article  Google Scholar 

  17. Vidya, C. S. S., Manoharan, M., Kumar, C. T. R., Savithri, H. S., & Sita, G. L. (2000). Journal of Plant Physiology, 156, 106–110.

    Article  CAS  Google Scholar 

  18. Roekel, J. S. C., Damm, B., Melchers, L. S., & Hoekema, A. (1993). Plant Cell Reports, 12, 644–647.

    Article  Google Scholar 

  19. Frary, A., & Earle, E. D. (1996). Plant Cell Reports, 6, 235–240.

    Google Scholar 

  20. Park, S. H., Morris, J. L., Park, J. E., Hirschi, K. D., & Smith, R. H. (2003). Journal of Plant Physiology, 160, 1253–1257.

    Article  CAS  Google Scholar 

  21. Raj, S. K., Singh, R., Pandey, S. K., & Singh, B. P. (2005). Current Science, 88, 1674–1679.

    CAS  Google Scholar 

  22. Qiu, D., Diretoo, G., Tavarza, R., & Giuliano, G. (2007). Scientia Horticulturae, 112, 172–175.

    Article  CAS  Google Scholar 

  23. Hu, W., & Phillips, G. C. (2001). In Vitro Cellular & Developmental Biology-Plant, 37, 12–18.

    Article  CAS  Google Scholar 

  24. Sun, H. J., Uchii, S., Watanabe, S., & Ezira, H. (2006). Plant & Cell Physiology, 47, 426–431.

    Article  CAS  Google Scholar 

  25. Velcheva, M., Faltin, Z., Flaishman, M., Eshdat, Y., & Perl, A. (2005). Plant Science, 168, 121–130.

    Article  CAS  Google Scholar 

  26. Feldmann, K. A. (1991). The Plant Journal, 1, 71–82.

    Article  CAS  Google Scholar 

  27. Grob-Hardt, R., & Laux, T. (2003). Journal of Cell Science, 116, 1659–1666.

    Article  Google Scholar 

  28. Sujatha, M., & Reddy, T. P. (1998). Plant Cell Reports, 17, 561–566.

    Article  CAS  Google Scholar 

  29. Pavingerova, D., & Ond ej, M. (1995). Biologia Plantarum, 37, 467–471.

    Article  Google Scholar 

  30. Baskaran, P., & Dasgupta, I. (2012). Journal of Plant Biochemistry and Biotechnology, 21(2), 268–274.

    Article  Google Scholar 

  31. Murashige, T., & Skoog, F. (1962). Physiologia Plantarum, 15, 473–497.

    Article  CAS  Google Scholar 

  32. Vinoth, S., Gurusaravanan, P., & Jayabalan, N. (2012). Journal of Applied Phycology, 24(5), 1329–1337.

    Article  CAS  Google Scholar 

  33. Jefferson, R. A., Burgees, S. M., & Hirsh, D. (1986). Proceedings of the National Academy of Sciences, 83, 8447–8451.

    Article  CAS  Google Scholar 

  34. Sailaja, M., Tarakeswari, M., & Sujatha, M. (2008). Plant Cell Reports, 27, 1509–1519.

    Article  CAS  Google Scholar 

  35. Carolina, C., & Francisco, A. C. M. (2004). Plant Cell Tissue and Organ culture, 76, 269–275.

    Article  Google Scholar 

  36. Andreoli, C., & Khan, A. (1999). Pesquisa Agropecuária Brasileira, 34, 1953–1958.

    Article  Google Scholar 

  37. Stachel, S. E., Nester, E. W., & Zambryski, P. C. (1986). Proceedings of the National Academy of Sciences, 83, 379–383.

    Article  CAS  Google Scholar 

  38. Sujatha, M., & Sailaja, M. (2005). Plant Cell Reports, 23, 803–810.

    Article  CAS  Google Scholar 

  39. Lin, J. J., Assad-Garcia, N., & Kuo, J. (1995). Plant Science, 109, 171–177.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Vinoth or N. Jayabalan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vinoth, S., Gurusaravanan, P. & Jayabalan, N. Optimization of Factors Influencing Microinjection Method for Agrobacterium tumefaciens-Mediated Transformation of Tomato. Appl Biochem Biotechnol 169, 1173–1187 (2013). https://doi.org/10.1007/s12010-012-0006-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-0006-0

Keywords

Navigation