Skip to main content
Log in

Performances of Lactobacillus brevis for Producing Lactic Acid from Hydrolysate of Lignocellulosics

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Utilizing all forms of sugars derived from lignocellulosic biomass via various pretreatment and hydrolysis process is a primary criterion for selecting a microorganism to produce biofuels and biochemicals. A broad carbon spectra and potential inhibitors such as furan, phenol compounds and weak acids are two major obstacles that limited the application of dilute-acid hydrolysate of lignocellulosics in lactic acid fermentation. Two strains of bacteria isolated from sour cabbage, S3F4 (Lactobacillus brevis) and XS1T3-4 (Lactobacillus plantrum), exhibited the ability to utilize various sugars present in dilute-acid hydrolysate of biomass. The S3F4 strain also showed strong resistance to potential fermentation inhibitors such as ferulic acid and furfural. Fermentation in flasks by this strain resulted in 39.1 g/l of lactic acid from dilute acid hydrolysates of corncobs that had initial total sugar concentration of 56.9 g/l (xylose, 46.4 g/l; glucose, 4.0 g/l; arabinose, 6.5 g/l). The hydrolysate of corncobs was readily utilized by S3F4 without detoxification, and the lactic acid concentration obtained in this study was higher compared to other reports.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mu, S. Y. (2001). Chemical Techno-Economics, 3, 10–14. (in chinese)

  2. Datta, R., & Henry, M. (2006). Journal of Chemical Technology and Biotechnology, 1, 1119–1129.

    Google Scholar 

  3. Datta, R., Tsai, S. P., Bonsignore, P., Moon, S. H., & Frank, J. R. (1995). FEMS Microbiology Reviews, 16(2/3), 221–231.

    Article  CAS  Google Scholar 

  4. Södergård, A., & Stolt, M. (2002). Progress in Polymer Science, 27, 1123–1163.

    Article  Google Scholar 

  5. Akerberg, C., & Zacchi, G. (2000). Bioresource Technology, 75, 119–126.

    Article  CAS  Google Scholar 

  6. Tejayadi, S., & Cheryan, M. (1995). Applied Microbiology and Biotechnology, 43, 242–248.

    Article  CAS  Google Scholar 

  7. Oh, H., Wee, Y. J., Yun, J. S., Han, S. H., Jung, S., & Ryu, H. W. (2005). Bioresource Technology, 96, 1492–1498.

    Article  CAS  Google Scholar 

  8. Ritter, S. K. (2008). Plant Biochemistry, 86(49), 15.

    Google Scholar 

  9. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., et al. (2005). Bioresource Technology, 96, 673–686.

    Article  CAS  Google Scholar 

  10. Palmqvist, E., & Bärbel, H. H. (2000). Bioresource Technology, 74, 25–33.

    Article  CAS  Google Scholar 

  11. Mussatto, S. I., & Roberto, I. C. (2004). Bioresource Technology, 93, 1–10.

    Article  CAS  Google Scholar 

  12. Nichols, N. N., Dien, B. S., Guisado, G. M., & Lopez, M. J. (2005). Applied Biochemistry and Biotechnology, 121(124), 279–390.

    Google Scholar 

  13. Lopez, M. J., Nichols, N. N., Dien, B. S., Moreno, J., & Bothast, R. J. (2004). Applied Microbiology and Biotechnology, 64, 125–131.

    Article  CAS  Google Scholar 

  14. Nilvebrant, N. O., Person, P., Reimann, A., Sousa, F. D., Gorton, L., & Jonsson, L. J. (2003). Applied Biochemistry and Biotechnology, 107(1–3), 615–628.

    Article  Google Scholar 

  15. Iyer, P. V., Thomas, S. A., & Lee, Y. Y. (2000). Applied Biochemistry and Biotechnology, 84(86), 665–677.

    Article  Google Scholar 

  16. Garde, A., Jonsson, G., Schmidt, A. S., & Ahring, B. K. (2002). Bioresource Technology, 81, 217–223.

    Article  CAS  Google Scholar 

  17. Shoemaker, S. (2004). Technical report, DOE contract number: FC07-99CH1007.

  18. Moldes, A. B., Torrado, A., Converti, A., & Domínguez, J. M. (2006). Applied Biochemistry and Biotechnology, 135, 219–227.

    Article  CAS  Google Scholar 

  19. Neureiter, M., Danner, H., Madzingaidzo, L., Miyafuji, H., & Thomasser, C. (2004). Chemical and Biochemical Engineering Quarterly, 18(1), 55–63.

    CAS  Google Scholar 

  20. Patel, M., Ou, M., Ingram, L. O., & Shanmugam, K. T. (2004). Biotechnological Letters, 26, 865–868.

    Article  CAS  Google Scholar 

  21. Keelnatham T. S. (2006). Patent no. US 7098009.

  22. Maas, R. H. W., & Bakker, R. R. (2008). Applied Microbiology and Biotechnology, 78, 751–758.

    Article  CAS  Google Scholar 

  23. Zhang, Y. M., Liang, Y., Lu, X. B., Yang, J., Ma, P. S., and Zhang, S. Y. (2007) Journal of Tianjin University 40(4), 432–436. (in chinese)

    Google Scholar 

  24. Li, R.J., Xue, P.J., Deng, Y.D. (2007). Patent no. CN101220381.

  25. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., et al. (2008). Technical report, National Renewable Energy Laboratory. USA: Midwest Research Institute.

    Google Scholar 

  26. Lee, D.K., Owens, V.N., Boe, A., Jeranyama, P. Composition of herbaceous Biomass feed stocks, Available from http://agbiopubs.sdstate.edu/articles/SGINC1-07.pdf. Accessed April 10, 2009.

  27. Nilsson, A. Control of fermentation of lignocellulosic hydrolysates, Available from http://www.chemeng.lth.se/exjobb/010.pdf. Accessed March 30, 2009.

  28. Klinke, H. B., Thomsen, A. B., & Ahring, B. K. (2004). Applied Microbiology and Biotechnology, 66, 10–26.

    Article  CAS  Google Scholar 

  29. Saier, M. H., Jr., Ye, J. J., Klinke, S., & Nino, E. (1996). Journal of Bacteriology, 178, 314–316.

    CAS  Google Scholar 

  30. Mass, R. H. W., Bakker, R. R., Eggink, G., & Weusthuis, R. A. (2006). Applied Microbiology and Biotechnology, 72, 861–868.

    Article  CAS  Google Scholar 

  31. Dien, B. S., Nichols, N. N., & Bothast, R. J. (2002). Journal of Industrial Microbiology and Biotechnology, 29, 221–227.

    Article  CAS  Google Scholar 

  32. Bai, D. M., Zhao, X. M., Li, X. G., & Xu, S. M. (2004). Biochemical Engineering Journal, 18, 41–48.

    Article  CAS  Google Scholar 

  33. Bai, D. M., Li, S. Z., Liu, A. L., & Cui, Z. F. (2008). Applied Biochemistry and Biotechnology, 144, 79–85.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Major State Basic Research Development Program of China (973 Program; No. 2007CB7143045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, W., Jia, W., Li, Y. et al. Performances of Lactobacillus brevis for Producing Lactic Acid from Hydrolysate of Lignocellulosics. Appl Biochem Biotechnol 161, 124–136 (2010). https://doi.org/10.1007/s12010-009-8857-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8857-8

Keywords

Navigation