Skip to main content

Advertisement

Log in

Effect of polygonal surfaces on development of viscous fingering in lifting plate Hele-Shaw cell

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

Bio-mimicking is the process of mimicking the various patterns, models, and systems of nature to take inspiration and solve human problems. The fractal-like patterns are seen in the leaves, tree branches, veins and arteries of the human body, etc. Imitation of these structures is a complex process. This can be achieved using lifting plate Hele-Shaw cell (LPHSC). In LPHSC, non-Newtonian fluid is placed between the two flat plates separated by a minimal distance. The lower plate is kept fixed, and the upper plate is lifted precisely. This leads to the formation of Saffman-Taylor instability or uncontrolled viscous fingering. When a low viscous fluid interacts with high viscous fluid, it tries to displace high viscous fluid, resulting in fractal-like structures. This paper investigates fractal formation in Hele-Shaw cell on different polygonal surfaces such as triangular, square, pentagonal, and hexagonal plates. The authors studied the effect of the sides and corners of the polygons and controlled the instabilities using a gap between plates and the lifting velocity of the upper plate. The entire process of fractal formation is simulated in ANSYS software, and experimental and simulated results hold good agreement. This proposed method will be used to fabricate microstructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Pence, D.: Reduced pumping power and wall temperature in microchannel heat sinks with fractal-like branching channel networks. Microscale. Thermophys. Eng. 6, 319–330 (2003). https://doi.org/10.1080/10893950290098359

    Article  Google Scholar 

  2. Bahadorimehr, A.R., Damghanian, M., Burhanuddin, Y.M.: A static micromixer inspired from fractal-like natural flow systems. Adv. Mater. Res. 254, 25–28 (2011). https://doi.org/10.4028/www.scientific.net/amr.254.25

    Article  Google Scholar 

  3. Gervais, L., Delamarche, E.: Toward one-step point-of-care immunodiagnostics using capillary-driven microfluidics and PDMS substrates. Lab Chip 9, 3330 (2009). https://doi.org/10.1039/b906523g

    Article  Google Scholar 

  4. Wu, W., Hansen, C.J., Aragón, A.M., et al.: Direct-write assembly of biomimetic microvascular networks for efficient Fluid Transport. Soft Matter 6, 739–742 (2010). https://doi.org/10.1039/b918436h

    Article  Google Scholar 

  5. Gandhi, P., Deshmukh, S., Ramtekkar, R., Bhole, K., Baraki, A.: “On-axis” linear focused spot scanning microstereolithography system: optomechatronic Design, analysis and development. J. Adv. Manufact. Syst. 12, 43–68 (2013). https://doi.org/10.1142/s0219686713500030

    Article  Google Scholar 

  6. Bhole, K.S., Kale, B.: Techniques to minimise stair-stepping effect in micro-stereolithography process: a review. Adv. Mater. Process. Technol. 30, 1–20 (2021). https://doi.org/10.1080/2374068x.2021.1970997

    Article  Google Scholar 

  7. Bhole, K., Gandhi, P., Kundu, T.: On the evolution of cured voxel in bulk photopolymerization upon focused gaussian laser exposure. J. Appl. Phys. 116(4), 043105 (2014). https://doi.org/10.1063/1.4891109

    Article  Google Scholar 

  8. Gandhi, P., Bhole, K.: Characterization of “bulk lithography” process for fabrication of three-dimensional microstructures. J. Micro Nano-Manufact. 1(4), 5461 (2013). https://doi.org/10.1115/1.4025461

    Article  Google Scholar 

  9. Gandhi, P., Bhole, K.: 3D microfabrication using bulk lithography. In: ASME International Mechanical Engineering Congress and Exposition. Denver, Colorado, USA Nov. 54976, pp. 393–399 (2011)

  10. Gandhi, P., Kamble, S., Bhole, K.: Novel fabrication and characterisation of diaphragm micromirror using bulk lithography, In: ASME International Mechanical Engineering Congress and Exposition, Houston, Texas, USA Nov. pp. 549–554 (2012). https://doi.org/10.1115/IMECE2012-87745

  11. Gandhi, P., Chaudhari N., Bhole K.: Fabrication of textured 3D microstructures using Bulk lithography. In: ASME International Manufacturing Science and Engineering Conference, MSEC Notre Dame, USA June 4–8, pp. 959–964(2012). https://doi.org/10.1115/MSEC2012-7357

  12. Bhole, K.S., Gandhi, P.S., Kundu, T.: Characterization of cured width under wide range of gaussian laser exposure for bulk lithography. Procedia Materials Science. 5, 2487–2492 (2014). https://doi.org/10.1016/j.mspro.2014.07.500

    Article  Google Scholar 

  13. Bhole, K., Ekshinge, S., Gandhi, P.: Fabrication of continuously varying thickness micro-cantilever using bulk lithography process. In: International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, (Vol. 45806, p. V001T01A009, (2014) https://doi.org/10.1115/MSEC2014-4041.

  14. Shewale, J. J, Bhole, K.S.: 3D polymer microneedle array: Fabrication and analysis. International Conference on Nascent Technologies in the Engineering Field (ICNTE) (pp. 1–6). IEEE, (2015) https://doi.org/10.1109/ICNTE.2015.7029915.

  15. Raju, R., Manikandan, N., Palanisamy, D., Arulkirubakaran, D., Binoj, J.S., Thejasree, P., Ahilan, C.: A review of challenges and opportunities in additive manufacturing. In: Palani, I.A., Sathiya, P., Palanisamy, D. (eds.) Recent Advances in Materials and Modern Manufacturing. Lecture Notes in Mechanical Engineering Springer, Singapore (2022)

    Google Scholar 

  16. Varma, M.M.M.K., Baghel, P.K., Raju, R.: Additive manufacturing of thermosetting resins In-Situ Carbon Fibers: a review. In: Palani, I.A., Sathiya, P., Palanisamy, D. (eds.) Recent Advances in Materials and Modern Manufacturing. Lecture Notes in Mechanical Engineering Springer, Singapore (2022)

    Google Scholar 

  17. Thirugnanasambantham, K.G., Francis, A., Ramesh, R., Aravind, M., Reddy, M.K.: Investigation of erosion mechanisms on IN-718 based turbine blades under water jet conditions. Int. J. Interact Design Manufact. (2022). https://doi.org/10.1007/s12008

    Article  Google Scholar 

  18. Saffman, P.G.: Viscous fingering in Hele-Shaw cells. J. Fluid Mech. 173, 73–94 (1986). https://doi.org/10.1017/S0022112086001088

    Article  MathSciNet  MATH  Google Scholar 

  19. Taylor, G., Saffman, P.G.: A note on the motion of bubbles in a Hele-Shaw cell and porous medium. Quarterly J. Mech. Appl. Math. 12(3), 265–279 (1959). https://doi.org/10.1093/qjmam/12.3.265

    Article  MathSciNet  MATH  Google Scholar 

  20. Choudhury, M.D., Tarafdar, S.: Fingering instability in non-Newtonian fluids during squeeze flow in a Hele-Shaw cell. Indian J. Phys. 89(5), 471–477 (2015). https://doi.org/10.1007/s12648-014-0606-3

    Article  Google Scholar 

  21. Pouplard, A., Tsai. P. A.: Manipulating viscous fingering of complex fluids. Bull. Am. Phys. Soc. 66 (17) (2021).

  22. Chen, C., Huang, C., Wang, L., et al.: Controlling radial fingering patterns in miscible confined flows. Phys. Rev. E 82, 056308 (2010). https://doi.org/10.1103/PhysRevE.82.056308

    Article  Google Scholar 

  23. Kale, B. S.; Bhole, K. Parametric Analysis for forming meso fractals from nanoparticle seeded resin in Hele Shaw cell. In IOP Conference Series: Materials Science and Engineering (Vol. 577, No. 1, p. 012154). IOP Publishing, November 2019. Doi: https://doi.org/10.1088/1757-899X/577/1/012154

  24. Shuwang, Li., Lowengrub, J., Fontana, J., Muhoray, P.P.: Control of viscous fingering patterns in a radial Hele-Shaw Cell. Phys. Rev. E. 102(17), 174501 (2009). https://doi.org/10.1103/PhysRevLett.102.174501

    Article  Google Scholar 

  25. Dias, E.O., Parisio, F., Miranda, J.A.: Suppression of viscous fluid fingering: A piecewise-constant injection process. Phys. Rev. E. 82(6), 067301 (2010). https://doi.org/10.1103/PhysRevE.82.067301

    Article  Google Scholar 

  26. Kale, B.S., Bhole, K.: Controlling the instabilities in the radial Hele-Shaw cell. Int. J. Theoret Appl. Multiscale Mech. 3(3), 245–260 (2020). https://doi.org/10.1504/IJTAMM.2020.112780

    Article  Google Scholar 

  27. Bhole, K.S., Kale, B.: Sublimation technique for minimisation of stiction induced during fabrication of closely spaced microstructures. Adv. Mater. Process. Technol. (2022). https://doi.org/10.1080/2374068X.2022.2036445

    Article  Google Scholar 

  28. Kale, B.S., Bhole, K., Sharma, C.: Effect of anisotropies in formation of viscous fingering in lifting plate Hele-Shaw cell. Adv. Mater. Process. Technol. (2021). https://doi.org/10.1080/2374068X.2021.2013679

    Article  Google Scholar 

  29. Devkare, S.S., Bhole, K.S., Kale, B.S., Sharma, C.: Control of viscous fingering of Bingham plastic fluid in lifting plate Hele-Shaw cell. Mater. Today: Proc. 28, 1920–1926 (2020). https://doi.org/10.1016/j.matpr.2020.05.314

    Article  Google Scholar 

  30. Islam, T.U., Gandhi, P.S.: Viscous fingering in multiport Hele shaw cell for controlled shaping of fluids. Sci. Rep. 7(1), 1–9 (2017). https://doi.org/10.1038/s41598-017-16830-3

    Article  Google Scholar 

  31. Kabiraj, S.K., Tarafdar, S.: Finger velocities in the lifting Hele Shaw cell. Phys. A: Statist. Mech. Appl. 328, 3–4 (2003). https://doi.org/10.1016/S0378-4371(03)00523-5

    Article  MathSciNet  MATH  Google Scholar 

  32. Holloway, K.E., De Bruyn, J.R.: Viscous fingering with a single fluid. Can. J. Phys. 83(5), 551–564 (2005). https://doi.org/10.1139/p05-024

    Article  Google Scholar 

  33. Lindner, A., Bonn, D., Amar, M.B., Meunier, J., Kellay, H.: Controlling viscous fingering. Euro Phys. News. 30(3), 77 (1999)

    Google Scholar 

  34. Bonn, D., Kellay, H., Braunlich, M., Amar, M.B., Meunier, J.: Viscous Fingering in complex fluids. Physica A 220, 1–2 (1995). https://doi.org/10.1016/0378-4371(95)00114-M

    Article  MathSciNet  Google Scholar 

  35. Lindner, A., Bonn, D., Poire, E.C., Amar, M.B., Meunier, J.: Viscous fingering in non-newtonian fluids. J. Fluid Mech. 469, 237 (2002). https://doi.org/10.1017/S0022112002001714

    Article  MathSciNet  MATH  Google Scholar 

  36. Al Housseiny, T., Tsai, P., Stone, H.: Control of interfacial instabilities using flow geometry. Nat. Phys. 8, 747–750 (2012). https://doi.org/10.1038/nphys2396

    Article  Google Scholar 

  37. Al, H.T., Stone, H.: Controlling viscous fingering in tapered Hele-Shaw cells. Phys. Fluids 25(9), 092102 (2013). https://doi.org/10.1063/1.4819317

    Article  Google Scholar 

  38. González, D., Asuaje, M.: Simulation of viscous fingering phenomenon using CFD tools. In: ASME International Mechanical Engineering Congress and Exposition (Vol. 46545, p. V007T09A001). American Society of Mechanical Engineers. November 2014. https://doi.org/10.1115/IMECE2014-36896

  39. Kale, B.S., Bhole, K., Devkare, S.S., Sharma, C.: Simulation of viscous fingers developed in lifting plate Hele-Shaw cell in volume of fluid model. Int. J. Adv. Sci. Technol. 29(3), 1486–14874 (2020)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge support for this work by the Science and Engineering Research Board (SERB), Government of India through Project Grant CRG/2021/000747.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankit Oza.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kale, B.S., Bhole, K.S., Dhongadi, H. et al. Effect of polygonal surfaces on development of viscous fingering in lifting plate Hele-Shaw cell. Int J Interact Des Manuf (2022). https://doi.org/10.1007/s12008-022-01030-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12008-022-01030-9

Keywords

Navigation