Skip to main content
Log in

Fingering instability in non-Newtonian fluids during squeeze flow in a Hele-Shaw cell

  • Original paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Instability at the interface separating different fluids, may develop under different conditions, leading to increased roughness of the boundary. A difference in viscosity of the fluids is usually responsible for viscous fingering, this occurs when the pressure on the low viscosity side is higher. We report here a reverse effect when a non-Newtonian fluid is squeezed between two plane surfaces by applying a force. We observe that a wave-like irregularity develops on the interface, though the viscosity of the air surrounding the fluid is negligible compared to the apparent viscosity of the thick potato starch gel under study. Development of the wavelength of the undulations as a function of the fluid composition and other factors is studied. We suggest a qualitative explanation for this effect, which is observed only in non-Newtonian fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. P G Saffman and G E Taylor Proc. R. Soc. Lond. (Ser A) 245 312 (1958)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. K V McCloud and J V Maher Phys. Rep. 260 139 (1995)

    Article  ADS  Google Scholar 

  3. T Vicsek Fractal Growth Phenomena 2nd edn. (Singapore: World Scientific) (1992)

  4. E Ben-Jacob et al. Phys. Rev. Lett. 55 1315 (1985)

  5. M B Amar and D Bonn Phys. D 209 1 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. S Sinha, S Nag and T Dutta Phys. Rev. E 80 026315 (2009)

    Article  ADS  Google Scholar 

  7. C Gay and L Leibler Phys. Today 52 11 48 (1999)

    Google Scholar 

  8. M Tirumkudulu, W B Russel and T J Huang Phys. Fluids 15 1588 (2003)

    Article  ADS  Google Scholar 

  9. M Dutta Choudhury, S Chandra, S Nag, S Das and S Tarafdar Colloids Surfa. A 407 64 (2012)

    Article  Google Scholar 

  10. http://youtu.be/FGf6VlmCqyw last accessed 11.09.2014

  11. K Zamzamian and M Mohammadpourfard Indian J. Phys. 86 889 (2012)

    Article  ADS  Google Scholar 

  12. M R Gupta et al Indian J. Phys. 86 471 (2012)

    Article  ADS  Google Scholar 

  13. N Sahu, B Parija and S Panigrahi Indian J. Phys. 83 493 (2009)

    Article  ADS  Google Scholar 

  14. A He, J Lowengrub and A Belmonte SIAM J. Appl. Math. 72 842 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  15. M Mishra, P M J Trevelyan, C Almarcha and A De Wit Phys. Rev. Lett. 105 204501 (2010)

    Article  ADS  Google Scholar 

  16. F M Rocha and J A Miranda Phys. Rev. E 87 0131017 (2013)

    Google Scholar 

  17. J V Fontana and J A Miranda Phys. Rev. E 88 023001 (2013)

    Article  ADS  Google Scholar 

  18. E O Dias and J A Miranda Phys. Rev. E 81 016312 (2010)

    Article  ADS  Google Scholar 

  19. E O Dais, E Alvarez-Lacalle, M S Carvalho and J A Miranda Phys. Rev. Lett. 109 144502 (2012)

    Article  ADS  Google Scholar 

  20. S M Troian, X L Wu and S A Safran Phys. Rev. Lett. 62 1496 (1989)

    Article  ADS  Google Scholar 

  21. C K Chang and N Y Liang Phys. Rev. Lett. 79 4381 (1997)

    Article  ADS  Google Scholar 

  22. H Tang, W Grivas, D Homentcovschi, J Geer and T Singler Phys. Rev. Lett. 85 2112 (2000)

  23. R Krechetnikov and G M Homsy J. Fluid Mech. 509 103 (2004)

  24. http://www.youtube.com/watch?v=3zoTKXXNQIU last accessed 11.09.2014

  25. F S Merkt, R D Deegan, D I Goldman, E R Rericha and H L Swinney Phys. Rev. Lett. 92 184501 (2004)

  26. C-Y Chen, C W Huang, L C Wang and J A Miranda Phys. Rev. E 82 056308 (2010)

  27. M B Amar and D Bonn Phys. D 209 1 (2005)

  28. L Paterson, J. Fluid Mech., 113 513 (1981)

  29. A Roy, S Roy, AJ Bhattacharyya, S Banerjee and S Tarafdar Eur. Phys. J. B 12 1 (1999)

  30. S Nag, T Dutta and S Tarafdar J. Coll. Interface Sci. 35 293 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

M. Dutta Choudhury is grateful to Alumni Association, Jadavpur University for Research Grants endowed by S Das and to CSIR for award of a senior research fellowship. A Giri is sincerely acknowledged for technical help and advice. Authors thank T Dutta, S Kitsunezaki and A Nakahara for helpful suggestions and discussion. We also thank CGCRI, Kolkata for helping Rheology measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Tarafdar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta Choudhury, M., Tarafdar, S. Fingering instability in non-Newtonian fluids during squeeze flow in a Hele-Shaw cell. Indian J Phys 89, 471–477 (2015). https://doi.org/10.1007/s12648-014-0606-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-014-0606-3

Keywords

PACS Nos.

Navigation