Skip to main content
Log in

Advances in the enhancement of bionic fractal microchannel heat transfer process

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper systematically classifies and summarizes the current state of research on the enhancement of heat transfer in microchannels with bionic fractal structure, including fractal structures such as leaf veins, tree branches, lung trachea, spider webs and other biomimetic microchannels. The fractal topology microchannels are also discussed with theoretical models and experimental numerical verification, which shows their advantages by comparing with conventional microchannels. Finally, the existing challenges and future directions of fractal structured microchannel are analyzed in depth and prospected, respectively. This study can provide new research ideas for the development of heat transfer process strengthening and provide the corresponding theoretical basis and scientific guidance for industrial application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Rendall J, Turnaoglu T, Patel VK. Experimental results of a magnetically coupled piezoelectric actuator to relieve microchannel heat exchanger maldistribution. Int Commun Heat Mass Transf. 2022;133:105944. https://doi.org/10.1016/j.icheatmasstransfer.2022.105944.

    Article  CAS  Google Scholar 

  2. Wang Z-G, Wang Y, Zhang J-Q, Zhang B-C. Overview of the key technologies of combined cycle engine precooling systems and the advanced applications of micro-channel heat transfer. Aerosp Sci Technol. 2014;39:31–9. https://doi.org/10.1016/j.ast.2014.08.008.

    Article  Google Scholar 

  3. Sun JR, Dai ZD. Bionics today and tomorrow. Acta Biophys Sin. 2007;23:109–15.

    Google Scholar 

  4. Chen X, Li T, Shen J. Fractal design of microfluidics and nanofluidics—a review. Chemom Intell Lab Syst. 2016;155:19–25. https://doi.org/10.1016/j.chemolab.2016.04.003.

    Article  CAS  Google Scholar 

  5. Lin WZ, Cao JH, Fang XM. Research progress of heat transfer enhancement of shell-and-tube heat exchange. Chem Ind Eng Prog. 2018;37:1276–86.

    Google Scholar 

  6. Wang T-H, Hao-Chi Wu, Meng J-H, Yan W-M. Optimization of a double-layered microchannel heat sink with semi-porous-ribs by multi-objective genetic algorithm. Int J Heat Mass Transf. 2020;149:119217. https://doi.org/10.1016/j.ijheatmasstransfer.2019.119217.

    Article  Google Scholar 

  7. Lampio K, Karvinen R. A new method to optimize natural convection heat sinks. Heat Mass Transf. 2018;54:2571–80. https://doi.org/10.1007/s00231-017-2106-4.

    Article  CAS  Google Scholar 

  8. Yan S, Wang F, Hong J, Sigmund O. Topology optimization of microchannel heat sinks using a two-layer model. Int J Heat Mass Transf. 2019;143:118462. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118462.

    Article  Google Scholar 

  9. Bendsøe MP. Optimal shape design as a material distribution problem. Struct Optim. 1989;1:193–202. https://doi.org/10.1007/BF01650949.

    Article  Google Scholar 

  10. Fujii D, Chen BC, Kikuchi N. Composite material design of two-dimensional structures using the homogenization design method. Int J Numer Meth Eng. 2001;50:2031–51. https://doi.org/10.1002/nme.105.

    Article  Google Scholar 

  11. Wang MY, Wang X, Guo D. A level set method for structural topology optimization. Comput Methods Appl Mech Eng. 2003;192:227–46. https://doi.org/10.1016/S0045-7825(02)00559-5.

    Article  Google Scholar 

  12. Camburn B, Otto K, Jensen D. Designing biologically inspired leaf structures: computational geometric transport analysis of volume-to-point flow channels. Eng Comput. 2015;31:361–74. https://doi.org/10.1007/s00366-014-0356-z.

    Article  Google Scholar 

  13. Alharbi AY, Pence DV, Cullion RN. Thermal characteristics of microscale fractal-like branching channels. J Heat Transf. 2004;126:744–52. https://doi.org/10.1115/1.1795236.

    Article  Google Scholar 

  14. Chen YP, Cheng P. Heat transfer and pressure drop in fractal tree-like microchannel nets. Int J Heat Mass Transf. 2002;45:2643–3264. https://doi.org/10.1016/S0017-9310(02)00013-3.

    Article  Google Scholar 

  15. Abo-Zahhad EM, Ookawara S, Esmail MFC. Thermal management of high concentrator solar cell using new designs of stepwise varying width microchannel cooling scheme. Appl Therm Eng. 2020;172:115124. https://doi.org/10.1016/j.applthermaleng.2020.115124.

    Article  Google Scholar 

  16. Manso AP, Marzo FF, Barranco J, et al. Influence of geometric parameters of the flow fields on the performance of a PEM fuel cell. A review. Int J Hydrogen Energy. 2012;37:15256–87. https://doi.org/10.1016/j.ijhydene.2012.07.076.

    Article  CAS  Google Scholar 

  17. Rahimi-Esbo M, Ranjbar AA, Ramiar A, et al. Improving PEM fuel cell performance and effective water removal by using a novel gas flow field. Int J Hydrogen Energy. 2016;41:3023–37. https://doi.org/10.1016/j.ijhydene.2015.11.001.

    Article  CAS  Google Scholar 

  18. Mehrdad G, Moosa A, Mehrzad S. Performance analysis of an innovative parallel flow field design of proton exchange membrane fuel cells using multiphysics simulation. Fuel. 2021;285:119194. https://doi.org/10.1016/j.fuel.2020.119194.

    Article  CAS  Google Scholar 

  19. Nuttapol L, Thatphong S. Novel hybrid serpentineinter digitated flow field with multi-inlets and outlets of gas flow channels for PEFC applications. Int J Hydrogen Energy. 2020;45:13601–11. https://doi.org/10.1016/j.ijhydene.2018.12.160.

    Article  CAS  Google Scholar 

  20. Korkischko I, Carmo B, Fonseca FC. Shape optimization of PEMFC flow-channel cross-sections. Fuel Cell. 2017;17:809–15. https://doi.org/10.1002/fuce.201700168.

    Article  CAS  Google Scholar 

  21. Mohammedi A, Sahli Y, Moussa HB. 3D investigation of the channel cross-section configuration effect on the power delivered by PEMFCs with straight channels. Fuel. 2020;263:116713. https://doi.org/10.1016/j.fuel.2019.116713.

    Article  CAS  Google Scholar 

  22. Manso AP, Marzo FF, Garmendia MM, et al. Numerical analysis of the influence of the channel cross-section aspect ratio on the performance of a PEM fuel cell with serpentine flow field design. Int J Hydrogen Energy. 2011;36:6795–808. https://doi.org/10.1016/j.ijhydene.2011.02.099.

    Article  CAS  Google Scholar 

  23. Jeon DH. The impact of rib structure on the water transport behavior in gas diffusion layer of polymer electrolyte membrane fuel cells. J Energy Inst. 2019;92:755–67. https://doi.org/10.1016/j.joei.2018.02.007.

    Article  CAS  Google Scholar 

  24. Yin Y, Shiyu Wu, Qin Y, et al. Quantitative analysis of trapezoid baffle block sloping angles on oxygen transport and performance of proton exchange membrane fuel cell. Appl Energy. 2020;271:115257. https://doi.org/10.1016/j.apenergy.2020.115257.

    Article  CAS  Google Scholar 

  25. Wang X, Qin Y, Shiyu Wu, et al. Numerical and experimental investigation of baffle plate arrangement on proton exchange membrane fuel cell performance. J Power Sources. 2020;457:228034. https://doi.org/10.1016/j.jpowsour.2020.228034.

    Article  CAS  Google Scholar 

  26. Zhang S-Y, Zhi-guo Qu, Hong-tao Xu, et al. A numerical study on the performance of PEMFC with wedge-shaped fins in the cathode channel. Int J Hydrogen Energy. 2021;46:27700–8. https://doi.org/10.1016/j.ijhydene.2021.05.207.

    Article  CAS  Google Scholar 

  27. Pence D. Reduced pumping power and wall temperature in microchannel heat sinks with fractal-like branching channel networks. Microscale Thermophys Eng. 2003;6:319–30. https://doi.org/10.1080/10893950290098359.

    Article  Google Scholar 

  28. Skanthan S, Yeoh CV, Chin WM, Foo JJ. Forced convective heat transfer and flow characteristics of fractal grid heat sinks. Int J Therm Sci. 2018;125:176–84. https://doi.org/10.1016/j.ijthermalsci.2017.11.016.

    Article  Google Scholar 

  29. Liang L, Hou J, Fang X, Han Y, Song J, Wang Le, Deng Z, Guizhi Xu, Hongwei Wu. Flow characteristics and heat transfer performance in a Y-Fractal mini/microchannel heat sink. Case Stud Therm Eng. 2019;15:100522. https://doi.org/10.1016/j.csite.2019.100522.

    Article  Google Scholar 

  30. Li F, Kumar TCA, Elmasry Y, Singh PK. Response surface methodology and artificial neural network modellings on hydraulic and thermal performances of a disk-shaped heat sink with tree-like microchannels. Case Stud Therm Eng. 2022;40:102539. https://doi.org/10.1016/j.csite.2022.102539.

    Article  Google Scholar 

  31. Xiang-fei Yu, Zhang C-P, Teng J-T, Huang S-y, Jin S-P, Lian Y-f, Cheng C-H, Ting-ting Xu, Chu J-C, Chang Y-J, Dang T, Greif R. A study on the hydraulic and thermal characteristics in fractal tree-like microchannels by numerical and experimental methods. Int J Heat Mass Transf. 2012;55:7499–507. https://doi.org/10.1016/j.ijheatmasstransfer.2012.07.050.

    Article  Google Scholar 

  32. Peng Y, Zhu X, Cao B, Luo Y, Zhou W. Heat transfer and permeability of the tree-like branching networks. Int J Heat Mass Transf. 2019;129:801–11. https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.121.

    Article  Google Scholar 

  33. Bejan A, Errera MR. Convective trees of fluid channels for volumetric cooling. Int J Heat Mass Transf. 2000;43:3105–18. https://doi.org/10.1016/S0017-9310(99)00353-1.

    Article  Google Scholar 

  34. Bejan A, Errera MR. Deterministic tree networks for fluid flow: geometry for minimal flow resistance between a volume and one point, fractals-an interdisciplin. J Complex Geom Nat. 1997;54:685–95. https://doi.org/10.1142/S0218348X97000553.

    Article  Google Scholar 

  35. Ji X, Yang X, Zhang Y, Zhang Y, Wei J. Experimental study of ultralow flow resistance fractal microchannel heat sinks for electronics cooling. Int J Therm Sci. 2022;179:107723. https://doi.org/10.1016/j.ijthermalsci.2022.107723.

    Article  CAS  Google Scholar 

  36. Ghaedamini H, Salimpour MR, Mujumdar AS. The effect of svelteness on the bifurcation angles role in pressure drop and flow uniformity of tree-shaped microchannels. Appl Therm Eng. 2011;31:708–16. https://doi.org/10.1016/j.applthermaleng.2010.10.005.

    Article  Google Scholar 

  37. Wang S, Boming Yu. A fractal model for the starting pressure gradient for Bingham fluids in porous media embedded with fractal-like tree networks. Int J Heat Mass Transf. 2011;54:4491–4. https://doi.org/10.1016/j.ijheatmasstransfer.2011.06.031.

    Article  Google Scholar 

  38. Lyu Z, Pourfattah F. On the thermal performance of a fractal microchannel subjected to water and kerosene carbon nanotube nanofluid. Sci Rep. 2020;10:1–16. https://doi.org/10.1038/s41598-020-64142-w.

    Article  CAS  Google Scholar 

  39. He Z, Yan Y, Zhao T, Zhang Li, Zhang Z. Multi-objective optimization and multi-factors analysis of the thermal/hydraulic performance of the bionic Y-shaped fractal heat sink. Appl Therm Eng. 2021;195:117157. https://doi.org/10.1016/j.applthermaleng.2021.117157.

    Article  Google Scholar 

  40. Peng H, Yanlian Du, Fenfen Hu, Tian Z, Shen Y. Thermal management of high concentrator photovoltaic system using a novel double-layer tree-shaped fractal microchannel heat sink. Renew Energy. 2023;204:77–93. https://doi.org/10.1016/j.renene.2023.01.001.

    Article  Google Scholar 

  41. Yan Y, Yan H, Feng S, Li L. Thermal-hydraulic performances and synergy effect between heat and flow distribution in a truncated doubled-layered heat sink with Y-shaped fractal network. Int J Heat Mass Transf. 2019;142:118337. https://doi.org/10.1016/j.ijheatmasstransfer.2019.06.093.

    Article  Google Scholar 

  42. Wong K-C, Muezzin FNA. Heat transfer of a parallel flow two-layered microchannel heat sink. Int Commun Heat Mass Transf. 2013;49:136–40. https://doi.org/10.1016/j.icheatmasstransfer.2013.09.004.

    Article  Google Scholar 

  43. Fang K, Xu SL. Microfludic and heat transfer performance of multilayer fractal-like microchannel network. Adv Mater Res. 2012;422:392–6. https://doi.org/10.4028/www.scientific.net/AMR.422.392.

    Article  Google Scholar 

  44. Shanglong Xu, Li Y, Xinglong Hu, Yang L. Characteristics of heat transfer and fluid flow in a fractal multilayer silicon microchannel. Int Commun Heat Mass Transfer. 2016;71:86–95. https://doi.org/10.1016/j.icheatmasstransfer.2015.12.024.

    Article  CAS  Google Scholar 

  45. Daniels BJ, Liburdy JA, Pence DV. Experimental studies of adiabatic flow boiling in fractal-like branching microchannels. Exp Therm Fluid Sci. 2011;35:1–10. https://doi.org/10.1016/j.expthermflusci.2010.07.016.

    Article  CAS  Google Scholar 

  46. Daniels BJ, Liburdy JA, Pence DV. Experimental studies of adiabatic flow boiling in fractal-like branching microchannels. Exp Thermal Fluid Sci. 2011;35:1–10. https://doi.org/10.1016/j.expthermflusci.2010.07.016.

    Article  CAS  Google Scholar 

  47. Shanglong Xu, Wang W, Fang K, Wong C-N. Heat transfer performance of a fractal silicon microchannel heat sink subjected to pulsation flow. Int J Heat Mass Transf. 2015;81:33–40. https://doi.org/10.1016/j.ijheatmasstransfer.2014.10.002.

    Article  CAS  Google Scholar 

  48. See YS, Leong KC. Experimental study of flow boiling of FC-72 in fractal-like flow channels. Int J Therm Sci. 2019;140:184–200. https://doi.org/10.1016/j.ijthermalsci.2019.02.042.

    Article  CAS  Google Scholar 

  49. Zhang C, Li J, Chen Y. Improving the energy discharging performance of a latent heat storage (LHS) unit using fractal-tree-shaped fins. Appl Energy. 2020;259:114102. https://doi.org/10.1016/j.apenergy.2019.114102.

    Article  Google Scholar 

  50. Yan Y, Shen KM, Liu Y, He ZQ. Thermal-hydraulic performance enhancement of miniature heat sinks using connected Y-shaped fractal micro-channels. Chem Eng and Process Process Intensif. 2021;166:108487. https://doi.org/10.1016/j.cep.2021.108487.

    Article  CAS  Google Scholar 

  51. Zhuang D, Yang Y, Ding G, Xinyuan Du, Zuntao Hu. Optimization of microchannel heat sink with rhombus fractal-like units for electronic chip cooling. Int J Refrig. 2020;116:108–18. https://doi.org/10.1016/j.ijrefrig.2020.03.026.

    Article  Google Scholar 

  52. Huang P, Dong G, Zhong X, Pan M. Numerical investigation of the fluid flow and heat transfer characteristics of tree-shaped microchannel heat sink with variable cross-section. Chem Eng Process Process Intensif. 2020;147:107769. https://doi.org/10.1016/j.cep.2019.107769.

    Article  CAS  Google Scholar 

  53. Zhang C, Chen Y, Rui Wu, Shi M. Flow boiling in constructal tree-shaped minichannel network. Int J Heat Mass Transf. 2011;54:202–9. https://doi.org/10.1016/j.ijheatmasstransfer.2010.09.051.

    Article  Google Scholar 

  54. Escher W, Michel B, Poulikakos D. Efficiency of optimized bifurcating tree-like and parallel microchannel networks in the cooling of electronics. Int J Heat Mass Transf. 2009;52:1421–30. https://doi.org/10.1016/j.ijheatmasstransfer.2008.07.048.

    Article  CAS  Google Scholar 

  55. Yu W, Xu L, Chen S. Numerical study on flow boiling in a tree-shaped microchannel. Fractals. 2019;27:1950111. https://doi.org/10.1142/S0218348X19501111.

    Article  Google Scholar 

  56. Yang Y, Jianyu Du, Li M, Li W, Wang Qi, Wen Bo, Zhang C, Jin Y, Wang W. Embedded microfluidic cooling with compact double H type manifold microchannels for large-area high-power chips. Int J Heat Mass Transf. 2022;197:123340. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123340.

    Article  CAS  Google Scholar 

  57. Senn SM, Poulikakos D. Laminar mixing, heat transfer and pressure drop in tree-like microchannel nets and their application for thermal management in polymer electrolyte fuel cells. J Power Sources. 2004;130:178–91. https://doi.org/10.1016/j.jpowsour.2003.12.025.

    Article  CAS  Google Scholar 

  58. Cho JIS, Neville TP, Trogadas P, Meyer Q. Visualization of liquid water in a lung-inspired flow-field based polymer electrolyte membrane fuel cell via neutron radiography. Energy. 2019;170:14–21. https://doi.org/10.1016/j.energy.2018.12.143.

    Article  CAS  Google Scholar 

  59. Xia C, Jianzhong Fu, Lai J, Yao X, Chen Z. Conjugate heat transfer in fractal tree-like channels network heat sink for high-speed motorized spindle cooling. Appl Therm Eng. 2015;90:1032–42. https://doi.org/10.1016/j.applthermaleng.2015.07.024.

    Article  Google Scholar 

  60. Wang G, Gu Y, Zhao L, Xuan J, Zeng G, Tang Z, Sun Y. Experimental and numerical investigation of fractal-tree-like heat exchanger manufactured by 3D printing. Chem Eng Sci. 2019;195:250–61. https://doi.org/10.1016/j.ces.2018.07.021.

    Article  CAS  Google Scholar 

  61. Paniagua-Guerra LE, Sehgal S, Gonzalez-Valle CU, Ramos-Alvarado B. Fractal channel manifolds for microjet liquid-cooled heat sinks. Int J Heat Mass Transf. 2019;138:257–66. https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.039.

    Article  Google Scholar 

  62. Hong FJ, Cheng P, Wu HY. Characterization on the performance of a fractal-shaped microchannel network for microelectronic cooling. J Micromech Microeng. 2011;21:065018. https://doi.org/10.1088/0960-1317/21/6/065018.

    Article  Google Scholar 

  63. Tan H, Longwen Wu, Wang M, Yang Z, Pingan Du. Heat transfer improvement in microchannel heat sink by topology design and optimization for high heat flux chip cooling. Int J Heat Mass Transf. 2019;129:681–9. https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.092.

    Article  Google Scholar 

  64. Tan H, Pingan Du, Zong K, Meng G, Gao X, Li Y. Investigation on the temperature distribution in the two-phase spider netted microchannel network heat sink with non-uniform heat flux. Int J Therm Sci. 2021;169:107079. https://doi.org/10.1016/j.ijthermalsci.2021.107079.

    Article  Google Scholar 

  65. Han X-H, Liu H-L, Xie G, Sang L, Zhou J. Topology optimization for spider web heat sinks for electronic cooling. Appl Therm Eng. 2021;195:117154. https://doi.org/10.1016/j.applthermaleng.2021.117154.

    Article  Google Scholar 

  66. Qiu J, Zhou J, Zhao Qi, Qin H, Chen X. Numerical investigation of flow boiling characteristics in cobweb-shaped microchannel heat sink. Case Stud Therm Eng. 2021;28:101677. https://doi.org/10.1016/j.csite.2021.101677.

    Article  Google Scholar 

  67. Ren F, Jun Du, Cai Y. Solidification performance analysis of bionic spider web vertical latent heat system based on response surface method optimization. J Energy Storage. 2022;55:105519. https://doi.org/10.1016/j.est.2022.105519.

    Article  Google Scholar 

  68. Liangyu Wu, Zhang X, Liu X. Numerical analysis and improvement of the thermal performance in a latent heat thermal energy storage device with spiderweb-like fins. J Energy Storage. 2020;32:101768. https://doi.org/10.1016/j.est.2020.101768.

    Article  Google Scholar 

  69. Wang J, Liu X, Liu F, Liu Y, Wang F, Yang Na. Numerical optimization of the cooling effect of the bionic spider-web channel cold plate on a pouch lithium-ion battery. Case Stud Therm Eng. 2021;26:101124. https://doi.org/10.1016/j.csite.2021.101124.

    Article  Google Scholar 

  70. Luo Y, Liu W, Wang Li, Xie W. Heat and mass transfer characteristics of leaf-vein-inspired microchannels with wall thickening patterns. Int J Heat Mass Transf. 2016;101:1273–82. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.120.

    Article  CAS  Google Scholar 

  71. He J, Mao M, Li D, Liu Y, Jin Z. Characterization of leaf-inspired microfluidic chips for pumpless fluid transport. J Bionic Eng. 2014;11:109–14. https://doi.org/10.1016/S1672-6529(14)60025-1.

    Article  Google Scholar 

  72. Damian-Ascencio CE, Saldaña-Robles A, Hernandez-Guerrero A, Cano-Andrade S. Numerical modeling of a proton exchange membrane fuel cell with tree-like flow field channels based on an entropy generation analysis. Energy. 2017;133:306–16. https://doi.org/10.1016/j.energy.2017.05.139.

    Article  CAS  Google Scholar 

  73. Wechsatol W, Lorente S, Bejan A. Optimal tree-shaped networks for fluid flow in a disc-shaped body. Int J Heat Mass Transf. 2002;45:4911–24. https://doi.org/10.1016/S0017-9310(02)00211-9.

    Article  Google Scholar 

  74. Wang XQ, Mujumdar AS, Yap C. Numerical analysis of blockage and optimization of heat transfer performance of fractal-like microchannel nets. J Electron Packag. 2006;128(1):38–45. https://doi.org/10.1115/1.2159007.

    Article  Google Scholar 

  75. Tan H, Zong K, Pingan Du. Temperature uniformity in convective leaf vein-shaped fluid microchannels for phased array antenna cooling. Int J Therm Sci. 2020;150:106224. https://doi.org/10.1016/j.ijthermalsci.2019.106224.

    Article  Google Scholar 

  76. Rubio-Jimenez CA, Hernandez-Guerrero A, Cervantes JG, Lorenzini-Gutierrez D, Gonzalez-Valle CU. CFD study of constructal microchannel networks for liquid-cooling of electronic devices. Appl Therm Eng. 2016;95:374–81. https://doi.org/10.1016/j.applthermaleng.2015.11.037.

    Article  Google Scholar 

  77. Cheng SJ, Miao JM, Tai CH. Numerical simulation applied to study the effects of fractal tree-liked network channel designs on PEMFC performance. Adv Mater Res. 2012;488:1219–23. https://doi.org/10.4028/www.scientific.net/AMR.488-489.1219.

    Article  Google Scholar 

  78. Yan WT, Li C, Ye WB. Numerical investigation of hydrodynamic and heat transfer performances of nanofluids in a fractal microchannel heat sink. Heat Transf Asian Res. 2019;48:2329–49. https://doi.org/10.1002/htj.21494.

    Article  Google Scholar 

  79. Guo R, Taotao Fu, Zhu C, Yin Y, Ma Y. Hydrodynamics and mass transfer of gas-liquid flow in a tree-shaped parallel microchannel with T-type bifurcations. Chem Eng J. 2019;373:1203–11. https://doi.org/10.1016/j.cej.2019.05.124.

    Article  CAS  Google Scholar 

  80. Wang H, Chen X. Performance improvements of microchannel heat sink using Koch fractal structure and nanofluids. Structures. 2023;50:1222–31. https://doi.org/10.1016/j.istruc.2023.02.109.

    Article  Google Scholar 

  81. Adrover A. Laminar convective heat transfer across fractal boundaries. Europhys Lett. 2010;90:14002. https://doi.org/10.1209/0295-5075/90/14002.

    Article  CAS  Google Scholar 

  82. Zhang S, Chen X, Zhongli Wu, Zheng Y. Numerical study on stagger Koch fractal baffles micromixer. Int J Heat Mass Transf. 2019;133:1065–73. https://doi.org/10.1016/j.ijheatmasstransfer.2019.01.009.

    Article  CAS  Google Scholar 

  83. Wang H, Chen X. Numerical simulation of heat transfer and flow of Al2O3-water nanofluid in microchannel heat sink with cantor fractal structure based on genetic algorithm. Anal Chim Acta. 2022;1221:339927. https://doi.org/10.1016/j.aca.2022.339927.

    Article  CAS  PubMed  Google Scholar 

  84. Chen Y, Panpan Fu, Zhang C, Shi M. Numerical simulation of laminar heat transfer in microchannels with rough surfaces characterized by fractal Cantor structures. Int J Heat Fluid Flow. 2010;31:622–9. https://doi.org/10.1016/j.ijheatfluidflow.2010.02.017.

    Article  Google Scholar 

  85. Zhang C, Deng Z, Chen Y. Temperature jump at rough gas–solid interface in Couette flow with a rough surface described by Cantor fractal. Int J Heat Mass Transf. 2014;70:322–9. https://doi.org/10.1016/j.ijheatmasstransfer.2013.10.080.

    Article  Google Scholar 

  86. Wang M, Sun H, Cheng L. Investigation of convective heat transfer performance in nanochannels with fractal Cantor structures. Int J Heat Mass Transf. 2021;171:121086. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121086.

    Article  Google Scholar 

  87. Yang X, Wei L, Cao F. A parametric study of laminar convective heat transfer in fractal minichannels with hexagonal fins. Int J Energy Res. 2020;44:9382–98. https://doi.org/10.1002/er.4942.

    Article  CAS  Google Scholar 

  88. Atyabi SA, Afshari E. Three-dimensional multiphase model of proton exchange membrane fuel cell with honeycomb flow field at the cathode side. J Clean Prod. 2019;214:738–48. https://doi.org/10.1016/j.jclepro.2018.12.293.

    Article  CAS  Google Scholar 

  89. Nabi H, Gholinia M, Ganji DD. Employing the (SWCNTs-MWCNTs)/H2O nanofluid and topology structures on the microchannel heatsink for energy storage: a thermal case study. Case Stud Therm Eng. 2023;42:102697. https://doi.org/10.1016/j.csite.2023.102697.

    Article  Google Scholar 

  90. Pu X, Li G, Liu Y. Progress and perspective of studies on biomimetic shark skin drag reduction. ChemBioEng Rev. 2016;3:26–40. https://doi.org/10.1002/cben.201500011.

    Article  Google Scholar 

  91. Dean B, Bhushan B. Shark-skin surfaces for fluid-drag reduction in turbulent flow: a review. Philos Trans R Soc A Math Phys Eng Sci. 2010;368:4775–806. https://doi.org/10.1016/j.bsbt.2017.02.001.

    Article  Google Scholar 

  92. Li P, Guo D, Huang X. Heat transfer enhancement, entropy generation and temperature uniformity analyses of shark-skin bionic modified microchannel heat sink. Int J Heat Mass Transf. 2020;146:118846. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118846.

    Article  Google Scholar 

  93. Li P, Luo YY, Zhang D. Flow and heat transfer characteristics and optimization study on the water-cooled microchannel heat sinks with dimple and pin-fin. Int J Heat Mass. 2018;119:152–62. https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.112.

    Article  Google Scholar 

  94. Gong L, Lu H, Li H. Parametric numerical study of the flow and heat transfer in a dimpled wavy microchannel. Heat Transf Res. 2016;47:105–18. https://doi.org/10.1016/j.icheatmasstransfer.2016.06.002.

    Article  Google Scholar 

  95. Hu J. A new era for AI HPC and IC technologies in the transition to an intelligent digital world. SPIE. 2021. https://doi.org/10.1117/12.2588637.

    Article  Google Scholar 

  96. Zhang Y, Ge S, Yu J. Chemical and biochemical analysis on lab-on-a-chip devices fabricated using three-dimensional printing. Trends Anal Chem. 2016;85:166–80. https://doi.org/10.1016/j.trac.2016.09.008.

    Article  CAS  Google Scholar 

  97. Rahman MH, Ahmad MR, Takeuchi M, Nakajima M, Hasegawa Y, Single FT. Cell mass measurement using drag force inside lab-on-chip microfluidics system. IEEE Trans Nanobiosci. 2016;14(8):927–34. https://doi.org/10.1109/TNB.2015.2507064.

    Article  Google Scholar 

  98. Fu YQ, Luo JK, Nguyen NT, Walton AJ, Flewitt AJ, Zu XT. Advances in piezoelectric thin films for acoustic biosensors, acoustofluidics and lab-on-chip applications. Prog Mater Sci. 2017;89:31–91. https://doi.org/10.1016/j.pmatsci.2017.04.006.

    Article  CAS  Google Scholar 

  99. Tang JG, Li X, Hu R, Mo ZY, Du M. A novel designed manifold ultrathin micro pin-fin channel for thermal management of high-concentrator photovoltaic system. Int J Heat Mass Tran. 2022;183:122094. https://doi.org/10.1016/j.ijheatmasstransfer.2021.122094.

    Article  Google Scholar 

  100. Agbulut Ü, Gürel AE, Ergün A, Ceylan I. Performance assessment of a V-trough photovoltaic system and prediction of power output with different machine learning algorithms. J Clean Prod. 2020;268:122269. https://doi.org/10.1016/j.jclepro.2020.122269.

    Article  Google Scholar 

  101. Ustaoglu A, Kandilli C, Cakmak M, Torlaklı H. Experimental and economical performance investigation of V-trough concentrator with different reflectance characteristic in photovoltaic applications. J Clean Prod. 2020;272:123072. https://doi.org/10.1016/j.jclepro.2020.123072.

    Article  Google Scholar 

  102. Chen HF, Ji J, Pei G, Yang J, Zhang Y. Experimental and numerical comparative investigation on a concentrating photovoltaic system. J Clean Prod. 2018;174:1288–98. https://doi.org/10.1016/j.jclepro.2017.11.058.

    Article  Google Scholar 

  103. Manikandan S, Selvam C, Poddar N, Pranjyal K, Lamba R, Kaushik SC. Thermal management of low concentrated photovoltaic module with phase change material. J Clean Prod. 2019;219:359–67. https://doi.org/10.1016/j.jclepro.2019.02.086.

    Article  Google Scholar 

  104. Panchal S, Khasow R, Dincer I, Agelin-Chaab M, Fraser R, Fowler M. Numerical modeling and experimental investigation of a prismatic battery subjected to water cooling. Numer Heat Transf Part A Appl. 2017;71:626–37. https://doi.org/10.1080/10407782.2016.1277938.

    Article  CAS  Google Scholar 

  105. Panchal S, Khasow R, Dincer I, Agelin-Chaab M, Fraser R, Fowler M. Thermal design and simulation of mini-channel cold plate for water cooled large sized prismatic Lithium-ion battery. Appl Therm Eng. 2017;122:80–90. https://doi.org/10.1016/j.applthermaleng.2017.05.010.

    Article  CAS  Google Scholar 

  106. Rao Z, Zhang X. Investigation on thermal management performance of wedge-shaped microchannels for rectangular Li-ion batteries. Int J Energy Res. 2019;43:3876–90. https://doi.org/10.1002/er.4571.

    Article  CAS  Google Scholar 

  107. Ziogou C, Ipsakis D, Seferlis P, Bezergianni S, Papadopoulou S, Voutetakis S. Optimal production of renewable hydrogen based on an efficient energy management strategy. Energy. 2013;55:58–67. https://doi.org/10.1016/j.energy.2013.03.017.

    Article  CAS  Google Scholar 

  108. Ashrafi M, Kanani H, Shams M. Numerical and experimental study of two phase flow uniformity in channels of parallel PEM fuel cells with modified Z-type flow-fields. Energy. 2018;147:317–28. https://doi.org/10.1016/j.energy.2018.01.064.

    Article  Google Scholar 

  109. Chowdhury MZ, Akansu YE. Novel convergent-divergent serpentine flow fields effect on PEM fuel cell performance. Int J Hydrogen Energy. 2017;42:25686–94. https://doi.org/10.1016/j.ijhydene.2017.04.079.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51872122), Natural Science Foundation of Shandong Province (ZR2022ME041), Project of Shandong Province Higher Educational Youth Innovation Science and Technology Program (2019KJB021), Shandong Provincial Central Leading Local Science and Technology Development Fund Project (YDZX2022003) and Taishan Scholars and Youth Innovation in Science and Technology Support Plan of Shandong Province University.

Funding

This work was funded by the National Natural Science Foundation of China (1872122), Natural Science Foundation of Shandong Province (ZR2022ME041), Project of Shandong Province Higher Educational Youth Innovation Science and Technology Program (2019KJB021), Shandong Provincial Central Leading Local Science and Technology Development Fund Project (YDZX2022003) and Taishan Scholars and Youth Innovation in Science and Technology Support Plan of Shandong Province University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuefeng Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest to this work. We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, M., Shen, S., Yang, X. et al. Advances in the enhancement of bionic fractal microchannel heat transfer process. J Therm Anal Calorim 148, 13497–13517 (2023). https://doi.org/10.1007/s10973-023-12620-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12620-4

Keywords

Navigation