Skip to main content
Log in

A practical approach towards utilisation of the net-shaped micro-structures developed in the lifting plate Hele–Shaw cell for micro-mixing

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

In order to get inspiration and find solutions to human issues, bio-mimicking is the act of mimicking the diverse patterns, models, and systems of nature. The human body's veins, arteries, leaves and tree branches exhibit mesh-like fractal patterns. The procedure of replicating these structures is challenging. These patterns can be easily mimicked by utilising lifting plate Hele–Shaw cell (LPHSC). In the LPHSC, a non-Newtonian fluid is squeezed between two flat plates. The upper plate is carefully raised while the bottom plate is kept stationary. As a result, Saffman–Taylor instability or uncontrollable mesh-like pattern develops. Fractal-like shapes are produced when a low-viscosity fluid interacts with a high-viscosity fluid and attempts to displace the high-viscosity fluid. Micro and meso-sized channels can be made by moulding mesh-like structures using polydimethylsiloxane. In-depth explanation of the conceptual paradigm for employing bio-inspired fractals for cooling in micro-electromechanical systems is mentioned. Micro-mixing is the process of interacting and blending fluids at the molecular level. A crucial stage in microfluidic systems is micro-mixing. To accomplish this effect, micromixers are employed. A crucial technique for improving sample mixing in a micromixer is microchannel layout design. This approach is being used to idealise the protein separation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Gandhi, P., Deshmukh, S., Ramtekkar, R., Bhole, K., Baraki, A.: “On-axis” linear focused spot scanning micro stereolithography system: opto mechatronic design, analysis and development. J. Adv. Manuf. Syst. 12, 43–68 (2013). https://doi.org/10.1142/s0219686713500030

    Article  Google Scholar 

  2. Bhole, K.S., Kale, B.: Techniques to minimise stair-stepping effect in micro-stereolithography process: a review. Adv. Mater. Process. Technol. 30, 1–20 (2021). https://doi.org/10.1080/2374068x.2021.1970997

    Article  Google Scholar 

  3. Bhole, K., Gandhi, P., Kundu, T.: On the evolution of cured voxel in bulk photo polymerisation upon focused gaussian laser exposure. J. Appl. Phys. 116(4), 043105 (2014). https://doi.org/10.1063/1.4891109

    Article  Google Scholar 

  4. Gandhi, P., Bhole, K.: Characterisation of “bulk lithography” process for fabrication of three-dimensional microstructures. J. Micro Nano Manuf. (2013). https://doi.org/10.1115/1.4025461

    Article  Google Scholar 

  5. Gandhi, P., Bhole, K.: 3D microfabrication using bulk lithography. In: ASME International Mechanical Engineering Congress and Exposition. Denver, Colorado, USA Nov. 54976, pp. 393–399 (2011).

  6. Gandhi, P., Kamble, S., Bhole, K.: Novel fabrication and characterisation of diaphragm micromirror using bulk lithography, In: ASME International Mechanical Engineering Congress and Exposition, Houston, Texas, USA Nov. pp. 549–554 (2012). https://doi.org/10.1115/IMECE2012-87745

  7. Gandhi, P., Chaudhari N., Bhole K.: Fabrication of textured 3D microstructures using bulk lithography. In: ASME International Manufacturing Science and Engineering Conference, MSEC Notre Dame, USA June 4–8, pp. 959–964 (2012). https://doi.org/10.1115/MSEC2012-7357

  8. Bhole, K.S., Gandhi, P.S., Kundu, T.: Characterisation of cured width under wide range of Gaussian laser exposure for bulk lithography. Procedia Mater. Sci. 5, 2487–2492 (2014). https://doi.org/10.1016/j.mspro.2014.07.500

    Article  Google Scholar 

  9. Bhole, K., Ekshinge, S., Gandhi, P.: Fabrication of continuously varying thickness micro-cantilever using bulk lithography process. In: International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, Vol. 45806, p. V001T01A009 (2014) https://doi.org/10.1115/MSEC2014-4041

  10. Shewale, J.J, Bhole, K.S.: 3D polymer microneedle array: Fabrication and analysis. In: International Conference on Nascent Technologies in the Engineering Field (ICNTE), pp. 1–6. IEEE (2015) https://doi.org/10.1109/ICNTE.2015.7029915.

  11. Raju, R., Manikandan, N., Palanisamy, D., Arulkirubakaran, D., Binoj, J.S., Thejasree, P., Ahilan, C.: A review of challenges and opportunities in additive manufacturing. In: Palani, I.A., Sathiya, P., Palanisamy, D. (eds.) Recent Advances in Materials and Modern Manufacturing. Lecture Notes in Mechanical Engineering. Springer, Singapore (2022). https://doi.org/10.1007/978-981-19-0244-4_3

    Chapter  Google Scholar 

  12. Varma, M.M.M.K., Baghel, P.K., Raju, R.: Additive manufacturing of thermosetting resins in-situ carbon fibers: a review. In: Palani, I.A., Sathiya, P., Palanisamy, D. (eds.) Recent Advances in Materials and Modern Manufacturing. Lecture Notes in Mechanical Engineering. Springer, Singapore (2022). https://doi.org/10.1007/978-981-19-0244-4_11

    Chapter  Google Scholar 

  13. Thirugnanasambantham, K.G., Francis, A., Ramesh, R., Aravind, M., Reddy, M.K.: Investigation of erosion mechanisms on IN-718 based turbine blades under water jet conditions. Int. J. Interact. Des. Manuf. (2022). https://doi.org/10.1007/s12008-022-00910-4

    Article  Google Scholar 

  14. Kale, B., Bhole, K., Raykar, N., Sharma, C., Deshmukh, P., Oak, S.: Fabrication of meso sized structures through controlled viscous fingering in lifting plate Hele–Shaw cell with holes and slots. Adv. Mater. Process. Technol. (2022). https://doi.org/10.1080/2374068X.2022.2127985

    Article  Google Scholar 

  15. Kale, B., Bhole, K., Mastud, S., Raykar, N. Sharma, C., Deshmukh, P.: Anisotropic approach to control viscous fingering pattern generated in lifting plate Hele–Shaw cell. In: ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE2022, August 14–17, 2022, St. Louis, Missouri, USA (2022). https://doi.org/10.1115/DETC2022-89600

  16. Singare, A., Kale, B., Bhole, K.: Experimental characterisation of meso-micro fractals from nanoparticle seeded resin in lifting plate Hele–Shaw cell. Elsevier’s Mater. Today: Proc. 5, 24213–24220 (2018). https://doi.org/10.1016/j.matpr.2018.10.216

    Article  Google Scholar 

  17. Kale, B.S., Bhole, K.: Controlling the instabilities in the radial Hele–Shaw cell. Int. J. Theor. Appl. Multiscale Mech. 3(3), 245–260 (2020). https://doi.org/10.1504/IJTAMM.2020.112780

    Article  Google Scholar 

  18. Devkare, S.S., Bhole, K.S., Kale, B.S., Sharma, C.: Control of viscous fingering of Bingham plastic fluid in lifting plate Hele–Shaw cell. Mater. Today: Proc. 28, 1920–1926 (2020). https://doi.org/10.1016/j.matpr.2020.05.314

    Article  Google Scholar 

  19. Kale, B.S., Bhole, K., Devkare, S.S., Sharma, C.: Simulation of viscous fingers developed in lifting plate Hele-Shaw cell in volume of fluid model. Int. J. Adv. Sci. Technol. 29(3), 1486–14874 (2020)

    Google Scholar 

  20. Saffman, P.G.: Viscous fingering in Hele–Shaw cells. J. Fluid Mech. 173, 73–94 (1986). https://doi.org/10.1017/S0022112086001088

    Article  MathSciNet  MATH  Google Scholar 

  21. Taylor, G., Saffman, P.G.: A note on the motion of bubbles in a Hele–Shaw cell and porous medium. Quarterly J. Mech. Appl. Math. 12(3), 265–279 (1959). https://doi.org/10.1093/qjmam/12.3.265

    Article  MathSciNet  MATH  Google Scholar 

  22. Choudhury, M.D., Tarafdar, S.: Fingering instability in non-Newtonian fluids during squeeze flow in a Hele–Shaw cell. Indian J. Phys. 89(5), 471–477 (2015). https://doi.org/10.1007/s12648-014-0606-3

    Article  Google Scholar 

  23. Pouplard, A., Tsai. P.A.: Manipulating viscous fingering of complex fluids. Bull. Am. Phys. Soc. 66(17), 5–8 (2021)

  24. Chen, C., Huang, C., Wang, L., et al.: Controlling radial fingering patterns in miscible confined flows. Phys. Rev. E 82, 056308 (2010). https://doi.org/10.1103/PhysRevE.82.056308

    Article  Google Scholar 

  25. Kale, B. S.; Bhole, K. Parametric Analysis for forming meso fractals from nanoparticle seeded resin in Hele Shaw cell. In: IOP Conference Series: Materials Science and Engineering, vol. 577, no. 1, p. 012154. IOP Publishing, November (2019). https://doi.org/10.1088/1757-899X/577/1/012154

  26. Dias, E.O., Parisio, F., Miranda, J.A.: Suppression of viscous fluid fingering: A piecewise-constant injection process. Phys. Rev. E. 82(6), 067301 (2010). https://doi.org/10.1103/PhysRevE.82.067301

    Article  Google Scholar 

  27. Shuwang, L., Lowengrub, J., Fontana, J., Muhoray, P.P.: Control of viscous fingering patterns in a radial Hele–Shaw cell. Phys. Rev. E. 102(17), 174501 (2009). https://doi.org/10.1103/PhysRevLett.102.174501

    Article  Google Scholar 

  28. Kabiraj, S.K., Tarafdar, S.: Finger velocities in the lifting Hele Shaw cell. Phys. A Stat. Mech. Appl. 328, 3–4 (2003). https://doi.org/10.1016/S0378-4371(03)00523-5

    Article  MathSciNet  MATH  Google Scholar 

  29. Kale, B.S., Bhole, K., Sharma, C.: Effect of anisotropies in formation of viscous fingering in lifting plate Hele–Shaw cell. Adv. Mater. Process. Technol. (2021). https://doi.org/10.1080/2374068X.2021.2013679

    Article  Google Scholar 

  30. Islam, T.U., Gandhi, P.S.: Viscous fingering in multiport Hele Shaw cell for controlled shaping of fluids. Sci. Rep. 7(1), 1–9 (2017). https://doi.org/10.1038/s41598-017-16830-3

    Article  Google Scholar 

  31. Bhole, K.S., Kale, B.: Sublimation technique for minimisation of stiction induced during fabrication of closely spaced microstructures. Adv. Mater. Process. Technol. (2022). https://doi.org/10.1080/2374068X.2022.2036445

    Article  Google Scholar 

  32. Holloway, K.E., De Bruyn, J.R.: Viscous fingering with a single fluid. Can. J. Phys. 83(5), 551–564 (2005). https://doi.org/10.1139/p05-024

    Article  Google Scholar 

  33. Lindner, A., Bonn, D., Amar, M. B., Meunier, J., Kellay, H.: Controlling viscous fingering. Euro Phys. News 30(3), 77–78 (1999)

    Google Scholar 

  34. Bonn, D., Kellay, H., Braunlich, M., Amar, M.B., Meunier, J.: Viscous fingering in complex fluids. Physica A 220, 1–2 (1995). https://doi.org/10.1016/0378-4371(95)00114-M

    Article  MathSciNet  Google Scholar 

  35. Lindner, A., Bonn, D., Poire, E.C., Amar, M.B., Meunier, J.: Viscous fingering in non-Newtonian fluids. J. Fluid Mech. 469, 237 (2002). https://doi.org/10.1017/S0022112002001714

    Article  MathSciNet  MATH  Google Scholar 

  36. Al Housseiny, T., Tsai, P., Stone, H.: Control of interfacial instabilities using flow geometry. Nat. Phys. 8, 747–750 (2012). https://doi.org/10.1038/nphys2396

    Article  Google Scholar 

  37. Al-Housseiny, T., Stone, H.: Controlling viscous fingering in tapered Hele–Shaw cells. Phys. Fluids 25(9), 092102 (2013). https://doi.org/10.1063/1.4819317

    Article  Google Scholar 

  38. Kale, B.S., Bhole, K.S., Dhongadi, H., Oak, S., Deshmukh, P., Oza, A., Ramesh, R.: Effect of polygonal surfaces on development of viscous fingering in lifting plate Hele–Shaw cell. Int. J. Interact. Des. Manuf. (IJIDeM) (2022). https://doi.org/10.1007/s12008-022-01030-9

    Article  Google Scholar 

  39. Barua, A.K.: A boundary integral method to investigate pattern formation in a rotating Hele–Shaw cell with time dependent gap. Comput. Math. Appl. 118, 36–45 (2022). https://doi.org/10.1016/j.camwa.2022.05.002

    Article  MathSciNet  MATH  Google Scholar 

  40. Singh, P., Ramisetti, L., Mondal, S.: Saffman–Taylor instability in a radial Hele–Shaw cell for a shear-dependent rheological fluid. J. Non Newtonian Fluid Mech. 294, 104579 (2021). https://doi.org/10.1016/j.jnnfm.2021.104579

    Article  MathSciNet  Google Scholar 

  41. Li, P., Xianfu, H., Zhao, Y.-P.: Active control of electro-visco-fingering in Hele–Shaw cells using Maxwell stress. Iscience 25(10), 105204 (2022). https://doi.org/10.1016/j.isci.2022.105204

    Article  Google Scholar 

  42. Kim, M., Kwang, H.S.: Colloidal nanoparticle-assisted double diffusive gravitational fingering in a vertical Hele–Shaw cell: theoretical and numerical studies. Colloid Interface Sci. Commun. 50, 100660 (2022). https://doi.org/10.1016/j.colcom.2022.100660

    Article  Google Scholar 

  43. Xiong, L., Chen, P., Zhou, Q.: Adhesion promotion between PDMS and glass by oxygen plasma pre-treatment. J. Adhes. Sci. Technol. 28(11), 1046–1054 (2014). https://doi.org/10.1080/01694243.2014.883774

    Article  Google Scholar 

  44. Wang, G.: Experimental and numerical investigation of fractal-tree-like heat exchanger manufactured by 3D printing. Chem. Eng. Sci. (2018). https://doi.org/10.1016/j.ces.2018.07.021

    Article  Google Scholar 

  45. Pence, D.: Reduced pumping power and wall temperature in microchannel heat sinks with fractal-like branching channel networks. Microscale Thermophys. Eng. 6(4), 319–330 (2002). https://doi.org/10.1080/10893950290098359

    Article  Google Scholar 

  46. Kee, R.J.: The design, fabrication, and evaluation of a ceramic counter-flow microchannel heat exchanger. Appl. Ther. Eng. 31(11–12), 2004–2012 (2011). https://doi.org/10.1016/j.applthermaleng.2011.03.009

    Article  Google Scholar 

  47. Villermaux, J., David, R.: Recent advances in the understanding of micro mixing phenomena in stirred reactors. Chem. Eng. Commun. 21(1–3), 105–122 (2007). https://doi.org/10.1080/00986448308940280

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support for this work by the Science and Engineering Research Board (SERB), Government of India through Project Grant CRG/2021/000747.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharatbhushan S. Kale.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kale, B.S., Bhole, K.S., Bhole, D. et al. A practical approach towards utilisation of the net-shaped micro-structures developed in the lifting plate Hele–Shaw cell for micro-mixing. Int J Interact Des Manuf (2023). https://doi.org/10.1007/s12008-022-01167-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12008-022-01167-7

Keywords

Navigation