Skip to main content
Log in

Interactive design of space manufacturing systems, optimality and opportunity

  • Technical Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

Increasing competitiveness in the space market, forces the industrialists and to pursuit ways to manufacture a high quality product at a minimal cost, to reduce the risk, optimize manufacturing cost and time, the developers have promoted focus on the interactive design of the products. This research focuses on Interactive Multidisciplinary Design and Optimization of Launch Vehicle Satellite with a three-stage liquid propellant. Recently, several works have been developed in the interactive Optimization Design Strategy and multidisciplinary design optimization. In this study, a new multidisciplinary design optimization approach has been involved in system space design including new disciplines. The design strategy has been successfully applied to design problems faced at space designers. The optimizer tool developed for interactive Optimization Design Strategy based on Heuristic Algorithms (Gravitational Search Algorithm, Stochastic Fractal Search, and Search Group Algorithm) proof the highest performance in terms of quality and convergence. The results of virtual reality manufacturing tool presented in this paper are significant in the preliminary system space design which presents an effective approach of development by reducing the cost and the time of analysis and that tool could help decision-makers to understand better the range of possibilities that confront them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

Abbreviations

MDO:

Multidisciplinary Design Optimization

MDF:

Multi-Disciplinary Feasible

LVS:

Launch Vehicle Satellite

XDSM:

eXtended Design Structure Matrix

SFS:

Stochastic Fractal Search

SGA:

Search Group Algorithm

GSA:

Gravitational Search Algorithm

GLM:

Gross Launch Mass

m f :

The final mass

m i :

The initial mass

M sat :

The mass of satellite

m str :

The structural mass

m p :

The useful propellant mass

D stage :

Stage Diameter

λ :

Payload ratio

S f :

Surface of launch vehicle fairing

L f :

Length of launch vehicle fairing

ρ :

Density of composition material

e :

Thickness of launch vehicle fairing

M fairing :

Mass of launch vehicle fairing

ΔV mission :

Increment velocity of mission

T:

Thrust

Q:

Mass flow

v e :

Velocity ejection of gas

A N :

Nozzle area

D N :

Nozzle diameters

\( P_{c} \) :

Combustion pressure

P atm :

Atmospheric pressure

T c :

Temperature combustion

\( V_{lox} , V_{{H_{2} }} \) :

Volume of propellant thank

\( R_{m} \) :

Mixture ratio

\( \rho_{lox} \) :

Density of propellant

ΔV mission :

Velocity Increment

\( {\text{R}} \) :

The radius of orbit

\( \upmu \) :

The gravitational parameter of planet

g:

The gravitational acceleration

γ:

The flight path angle

\( {\text{D}} \) :

The drag force

\( m^{{\prime }} \) :

The mass of rocket at each time

ρ :

Density of air

v :

Velocity of vehicle

h :

Height above ground

S ref :

Cross-sectional area of launch vehicle

C d :

Coefficient based on geometry of fairing

g 0 :

The gravitational acceleration

a :

The angle of attack

H sat :

Height of satellite

D f :

Fairing diameter

a :

Largest section of satellite

\( m\;and\;M \) :

Represent term and total numbers required in series summation

P 0 :

The incident wave amplitude

J m :

Bessel’s function of first kind

\( H_{m} \) :

Hankel’s function

mth:

Order for variable coefficients

A m :

Coefficient

\( \gamma_{m} \) :

Phase angles

k :

Wave number

φ :

Azimuthally angle

W AO :

Overall acoustic power

η :

Acoustic efficiency

n A :

Number of nozzles

\( {\text{f}}_{{{\text{nat}}l}} \) :

The lateral natural frequency

δ l :

The lateral deflection

\( {\text{f}}_{{{\text{nat}}a}} \) :

The axial natural frequency

δ a :

The axial deflection

E :

Young modulus

L :

Satellite length

I :

Area momentum of inertia of satellite

A :

Cross-sectional area of satellite

n :

Load factor

References

  1. Hunsaker, T., Bille, M. A., Kolodziejski, P.: Nanosat launch vehicle: a global perspective and business case. In: Proceedings of the AIAA SPACE 2013 Conference and Exposition, AIAA Paper 2013–5513 (2013)

  2. Buchen, E.M.S.: Nano/Microsatellite Market Assessment. SpaceWorks Enterprises Inc. (SEI), Atlanta (2014)

    Google Scholar 

  3. Tappeta, R., Renaud, J., Rodríguez, J.: An interactive multiobjective optimization design strategy for decision based multidisciplinary design. Eng Optim 34(5), 523–544 (2002)

    Article  Google Scholar 

  4. Sobieszczanski, S.J., Haftka, R.T.: Multidisciplinary aerospace design optimization: survey of recent developments. Struct. Multidiscip. Optim. 14(1), 1–23 (1997)

    Article  Google Scholar 

  5. Rafique, A.F., Linshu, H., Kamran, A., Zeeshan, Q.: Hyper heuristic approach for design and optimization of satellite launch vehicle. Chin. J. Aeronaut. 24, 150–163 (2011)

    Article  Google Scholar 

  6. Balesdent, M.: New MDO approaches for Launch Vehicle Design. Proc. Inst. Mech. Eng. G J. Aerosp. Eng. Sage 227(10), 1545–1555 (2013)

    Article  Google Scholar 

  7. Zakeri, M., Nosratollahi, M., Novinzade, A.: Multi-disciplinary system design optimization of a launch vehicle upper-stage. J. Aerosp. Technol. Manag. São José dos Campos. 9, 48–62 (2017)

    Article  Google Scholar 

  8. Afilipoae, T.P., et al.: Launch vehicle-MDO in the development of a Microlauncher. Transp. Res. Proc. 29, 1–11 (2018)

    Article  Google Scholar 

  9. Zafrane, M.A., Boudjemai, A., Boughanmi, N: Multidisciplinary design optimization of the acoustic interaction between the satellite and launch vehicle. In: 6th International Conference on Recent Advances in Space Technologies, pp. 577–588. IEEE (2013)

  10. Cárcamo, J.G., Trefftz, H., Acosta, D.A., Botero, L.F.: Collaborative design model review in the AEC industry. Int. J. Interact. Design Manuf. 11, 931–947 (2016)

    Article  Google Scholar 

  11. Haftka, R.T.: Integrated structure-control optimization of space structures. In: Proceedings of the 30th Structures, Structural Dynamics, and Materials Conference, pp. 1-9. Conference of AIAA, Long Beach (1990)

  12. Adelman, H.M.: Integrated multidisciplinary design optimization of rotorcraft. J. Aircr. 28(1), 22–28 (1991)

    Article  Google Scholar 

  13. Barthelemy J.F.: Integrating aerodynamics and structures in the minimum weight design of a supersonic transport wing. In: Proceedings of the 33rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Dallas, TX, (1992)

  14. August, R.: Integrated structural-aerodynamic analyzer. In: Proceedings of the 4th AIAA/NASA/USAF/OAI Symposium on Multidisciplinary Analysis and Optimization, Cleveland, Ohio (1992)

  15. Claus, R.E., Evans, A.L., Riley, M.F.: Multidisciplinary propulsion simulation using NPSS. In: Proceedings of the 4th AIAA/NASA/USAF/OAI Symposium on Multidisciplinary Analysis and Optimization, Cleveland, Ohio, pp. 53–62 (1992)

  16. Cramer, E., Frank, P., Shubin, G., Dennis, J., Lewis, R.: On alternative problem formulations for multidisciplinary design optimization. Proceedings of the 4th AIAA/NASA/USAF/OAI Symposium on Multidisciplinary Analysis and Optimization, Cleveland, Ohio, vol. 92, pp. 47–52 (1992)

  17. Chattopadhyay, A.: Multidisciplinary optimization and design variable sensitivity of helicopter rotor blades using a composite beam model. Compos. Eng. 3(7–8), 585–599 (1993)

    Article  Google Scholar 

  18. Cramer, E.J., Dennis, J.E., Frank, P.D., Lewis, R.M., Shubin, G.R.: Problem formulation for multidisciplinary optimization. SIAM J. Optim. 4(4), 754–776 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gage, P.J., Braun, R.D., Kroo, I.M.: Interplanetary trajectory optimization using a genetic algorithm. J. Astronaut. Sci. 43(1), 59–76 (1995)

    Google Scholar 

  20. Gage, P.: New approaches to optimization in aerospace conceptual design. In: NASA CR-196695 (1995)

  21. Ullah, R., Zhou, D., Zhou, P., Hussain, M., Amjad Sohail, M.: Approaches for space launch vehicle conceptual design and multi-attribute evaluation. Aerosp. Sci. Technol. 25, 65–74 (2013)

    Article  Google Scholar 

  22. Larson, W.J., Wertz, J.R.: Space Mission Analysis and Design, 3rd edn. Space Technology Library, Vol. 8 (1999) (ISBN: 1-881883-10-8)

  23. Paul, A.C., Claudio, B., Bernd, C.: Future Spacecraft Propulsion Systems and Integration. Springer, Berlin (2018)

    Google Scholar 

  24. Zafrane, M.A., Boudjemai, A., Boughanmi, N.: Multidisciplinary design optimization of the acoustic interaction between the satellite and launch vehicle. 6th Recent Advances in space Technologies, IEEE, pp. 577–582 (2013)

  25. Salem, H., Boutchicha, D., Boudjemai, A.: Modal analysis of the multi-shaped coupled honeycomb structures used in satellites structural design. Int. J. Interact. Design Manuf. 12(3), 955–967 (2018)

    Article  Google Scholar 

  26. Morshed M.M.M.: Investigation of External Acoustic Loading on a Launch Vehicle Fairing During Lift-off. Ph.D. Dissertation, School of Mechanical Engineering, The University of Adelaide, SA, Australia (2008)

  27. Pellissetti, M.F., Fransen, S.H.J.A., Pradlwarter, H.J., Calci, A., Schuller, G.I., Klein, M.: Stochastic launcher-satellite coupled dynamic analysis. J. Spacecr. Rocket 43(6), 1308–1318 (2006)

    Article  Google Scholar 

  28. Calvi, A.: Uncertainty-based loads analysis for spacecraft: finite element model validation and dynamic responses. Comput. Struct. J. 83(14), 1103–1112 (2005)

    Article  Google Scholar 

  29. Morshed, M.M.M.: Prediction of exterior sound pressure field of a cylinder using the boundary element method. Proc. Eng. 56, 857–863 (2013)

    Article  Google Scholar 

  30. Morse, P.M.: Vibration and Sound, 1st edn. International series in physics. McGraw-Hill book company, Inc, New York, London (1936)

  31. Fahy, F.: Sound and Structure Vibration, 1st edn. Elsivier, London (1987) (ISBN: 9780080517377)

  32. Filippi, P., Bergassoli, A., Habault, D., Lefebvre, J.: Acoustics: Basic Physics, Theory, and Methods, 1st edn. Elsivier (1999), eBook. ISBN: 9780080498553

  33. Wertz, J.R., Larson, W.: Space Mission Analysis and Design, Space Technology Library. Springer, Berlin (1999)

    Google Scholar 

  34. Pourrajabian, A., Bakhtiari, M., Ebrahimi, R., Karimi, H.: Optimization of nose shape of Launch Vehicle using genetic algorithm and response surface methods. In: 4th International Conference on Recent Advances in Space Technologies, pp. 221–225. IEEE (2009)

  35. Jamilnia, R., Naghash, A.: Simultaneous optimization of staging and trajectory of launch vehicles using two different approaches. Aerosp. Sci. Technol. 23, 85–92 (2012)

    Article  Google Scholar 

  36. Lambe, A.B.: Extensions to the design structure matrix for the description of multidisciplinary design, analysis, and optimization processes. Struct. Multidiscip. Optim. 46(2), 273–284 (2012)

    Article  MATH  Google Scholar 

  37. Buzuku, S., Kraslawski, A.: Use of design structure matrix for analysis of critical barriers in implementing eco-design initiatives in the pulp and paper industry. Proc. Manuf. 11, 742–750 (2017)

    Google Scholar 

  38. Hamid, S.: Stochastic fractal search: a powerful metaheuristic algorithm. Knowl. Syst. 75, 1–18 (2015)

    Article  Google Scholar 

  39. Noor, H., Mostafa, Z.A., Suganthan, E.: A decremental stochastic fractal differential evolution for global numerical optimization. Inf. Sci. 372, 470–491 (2016)

    Article  Google Scholar 

  40. Mohamed, A.M., Enrico, Z.: A penalty guided stochastic fractal search approach for system reliability optimization. Reliab. Eng. Syst. Saf. 152, 213–227 (2016)

    Article  Google Scholar 

  41. Soheyl, K., Saman, K.: A robust stochastic fractal search approach for optimization of the surface grinding process. Swarm Evol. Comput. 38, 173–186 (2018)

    Article  Google Scholar 

  42. Tuan, A.Z., Rahman, A., Nawal, A.A.: Active vibration control of a flexible beam structure using chaotic fractal search algorithm. Proc. Eng. 170, 299–306 (2017)

    Article  Google Scholar 

  43. Hossam, M., El-Hawary, M.E.: Optimization of neural network parameters by stochastic fractal search for dynamic state estimation under communication failure. Electr. Power Syst. Res. 147, 288–301 (2017)

    Article  Google Scholar 

  44. Gonçalves, M.S., Lopez, R.H., Miguel, L.F.F.: Search group algorithm: a new metaheuristic method for the optimization of truss structures. Comput. Struct. 153, 165–184 (2015)

    Article  Google Scholar 

  45. Manijeh, A., Saeed, T., Heresh, S.: Improved group search optimization algorithm for coordination of directional overcurrent relays. Swarm Evol Comput. 23, 40–49 (2015)

    Article  Google Scholar 

  46. Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: GSA: a gravitational search algorithm. Inf. Sci. 179(13), 2232–2248 (2009)

    Article  MATH  Google Scholar 

  47. De Moura Oliveira, P.B., Solteiro Pires, E.J., Novais, P.: Design of posicast PID control systems using a gravitational search algorithm. Neurocomputing 167, 18–23 (2015)

    Article  Google Scholar 

  48. Sushama, N., Sanchit, A., Sangeeta, D.: Feature selection using gravitational search algorithm for biomedical data. Proc. Comput. Sci. 115, 258–265 (2017)

    Article  Google Scholar 

  49. Illias, H.A., Mou, K.J., Bakar, A.H.A.: Estimation of transformer parameters from nameplate data by imperialist competitive and gravitational search algorithms. Swarm Evol Comput 36, 18–26 (2017)

    Article  Google Scholar 

  50. Biswa, B., Mangaraj, P.S.: An optimal LAA subsystem designed using gravitational search algorithm. Eng. Sci. Technol. Int. J. 20, 494–501 (2017)

    Article  Google Scholar 

  51. Niemeyer, L., Pietronero, L., Wiesmann, H.J.: Fractal dimension of dielectric breakdown. Phys. Rev. Lett. 52(12), 1033–1036 (1984)

    Article  MathSciNet  Google Scholar 

  52. Barone, S., Paoli, A., Razionale, A.V., Savignano, R.: Computer aided modelling to simulate the biomechanical behaviour of customised orthodontic removable appliances. Int. J. Interact. Design Manuf. 10, 387–400 (2016)

    Article  Google Scholar 

  53. Wang, Z., Zhang, Q., Liu, Y., Zhang, Z.: A robust and accurate geometric model for automated design of drawbeads in sheet metal forming. Comput. Aided Des. 92, 42–57 (2017)

    Article  Google Scholar 

Download references

Acknowledgement

The authors wish to thank the Electrical Engineering Faculty of the University of Sciences and Technology of Oran and the Center of Satellites Development for their support to perform this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Amine Zafrane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zafrane, M.A., Boudjemai, A. & Boughanmi, N. Interactive design of space manufacturing systems, optimality and opportunity. Int J Interact Des Manuf 13, 773–796 (2019). https://doi.org/10.1007/s12008-018-0515-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-018-0515-3

Keywords

Navigation