Skip to main content
Log in

Extensions to the design structure matrix for the description of multidisciplinary design, analysis, and optimization processes

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

While numerous architectures exist for solving multidisciplinary design optimization (MDO) problems, there is currently no standard way of describing these architectures. In particular, a standard visual representation of the solution process would be particularly useful as a communication medium among practitioners and those new to the field. This paper presents the extended design structure matrix (XDSM), a new diagram for visualizing MDO processes. The diagram is based on extending the standard design structure matrix (DSM) to simultaneously show data dependency and process flow on a single diagram. Modifications include adding special components to define iterative processes, defining different line styles to show data and process connections independently, and adding a numbering scheme to define the order in which the components are executed. This paper describes the rules for constructing XDSMs along with many examples, including diagrams of several MDO architectures. Finally, this paper discusses potential applications of the XDSM in other areas of MDO and the future development of the diagrams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alexandrov NM, Lewis RM (2004a) Reconfigurability in MDO problem synthesis, part 1. In: Proceedings of the 10th AIAA/ISSMO multidisciplinary analysis and optimization conference

  • Alexandrov NM, Lewis RM (2004b) Reconfigurability in MDO problem synthesis, part 2. In: Proceedings of the 10th AIAA/ISSMO multidisciplinary analysis and optimization conference

  • Austin S, Baldwin A, Li B, Waskett P (2000) Analytical design planning technique (ADePT): a dependency structure matrix tool to schedule the building design process. Constr Manag Econ 18(2):173–182. doi:10.1080/014461900370807

    Article  Google Scholar 

  • Bloebaum CL, Hajela P, Sobieszczanski-Sobieski J (1992) Non-hierarchic system decomposition in structural optimization. Eng Optim 19(3):171–186. doi:10.1080/03052159208941227

    Article  Google Scholar 

  • Booch G, Rumbaugh J, Jacobson I (2005) Unified modeling language user guide, 2nd edn. Addison-Wesley Professional, Reading

    Google Scholar 

  • Braun RD, Kroo IM (1997) Development and application of the collaborative optimization architecture in a multidisciplinary design environment. In: Alexandrov N, Hussaini MY (eds) Multidisciplinary design optimization: state-of-the-art. SIAM, Philadelphia, pp 98–116

  • Braun RD, Gage P, Kroo IM, Sobieski IP (1996) Implementation and performance issues in collaborative optimization. In: Proceedings of the 6th AIAA, NASA, and ISSMO symposium on multidisciplinary analysis and optimization, AIAA paper 1996-4017

  • Browning TR (2001) Applying the design structure matrix to decomposition and integration problems: a review and new directions. IEEE Trans Eng Manage 48:292–306. doi:10.1109/17.946528

    Article  Google Scholar 

  • Cramer EJ, Dennis JE, Frank PD, Lewis RM, Shubin GR (1994) Problem formulation for multidisciplinary optimization. SIAM J Optim 4(4):754–776. doi:10.1137/0804044

    Article  MathSciNet  MATH  Google Scholar 

  • De Wit AJ, Van Keulen F (2010) Overview of methods for multilevel and/or multidisciplinary optimization. In: Proceedings of the 51st AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference, Orlando, Florida

  • DeMiguel AV, Murray W (2000) An analysis of collaborative optimization methods. In: Proceedings of the 8th AIAA/USAF/NASA/ISSMO symposium on multidisciplinary analysis and optimization, Long Beach, CA, aIAA 2000-4720

  • Eppinger SD, Whitney DE, Smith RP, Gebala DA (1994) A model-based method for organizing tasks in product development. Res Eng Des 6:1–13. doi:10.1007/BF01588087

    Article  Google Scholar 

  • Etman LFP, Kokkolaras M, Hoftkamp AT, Papalambros PY, Rooda JE (2005) Coordination specification in distributed optimal design of multilevel systems using the χ language. Struct Multidisc Optim 29:198–212. doi:10.1007/s00158-004-0467-z

    Article  Google Scholar 

  • Gebala DA, Eppinger SD (1991) Methods for analyzing design procedures. In: ASME conference on design theory and methodology, vol 31, pp 227–233. Miami, FL

  • Gray J, Moore KT, Naylor BA (2010) OpenMDAO: an open-source framework for multidisciplinary analysis and optimization. In: Proceedings of the 13th AIAA/ISSMO multidisciplinary analysis and optimization conference, Fort Worth, TX

  • Kim HM (2001) Target cascading in optimal system design. PhD thesis, University of Michigan

  • Kim HM, Michelena NF, Papalambros PY, Jian T (2003) Target cascading in optimal system design. J Mech Des 125(3):474–480. doi:10.1115/1.1582501

    Article  Google Scholar 

  • Kim HM, Chen W, Wiecek MM (2006) Lagrangian coordination for enhancing the convergence of analytical target cascading. AIAA J 44(10):2197–2207. doi:10.2514/1.15326

    Article  Google Scholar 

  • Kodiyalam S, Sobieszczanski-Sobieski J (2000) Bilevel integrated system synthesis with response surfaces. AIAA J 38(8):1479–1485. doi:10.2514/2.1126

    Article  Google Scholar 

  • Kroo IM (1997) MDO for large-scale design. In: Alexandrov N, Hussaini MY (eds) Multidisciplinary design optimization: state-of-the-art. SIAM, Philadelphia, pp 22–44

  • Lano RJ (1977) The N2 chart. Tech. rep., TRW

  • Martins JRRA, Marriage C, Tedford N (2009) pyMDO: an object-oriented framework for multidisciplinary design optimization. ACM Trans Math Softw 36(4):2–25. doi:10.1145/1555386.1555389

    Article  MathSciNet  Google Scholar 

  • Perez RE, Liu HHT, Behdinan K (2004) Evaluation of multidisciplinary optimization approaches for aircraft conceptual design. In: Proceedings of the 10th AIAA/ISSMO multidisciplinary analysis and optimization conference, Albany, NY, aIAA 2004–4537

  • Roth B (2008) Aircraft family design using enhanced collaborative optimization. PhD thesis, Stanford University

  • Sellar RS, Batill SM, Renaud JE (1996) Response surface based, concurrent subspace optimization for multidisciplinary system design. In: Proceedings of the 34th AIAA aerospace sciences and meeting exhibit

  • Sobieszczanski-Sobieski J (2008) Integrated system-of-systems synthesis. AIAA J 46(5):1072–1080. doi:10.2514/1.27953

    Article  Google Scholar 

  • Sobieszczanski-Sobieski J, Agte JS, Sandusky RR (2000) Bi-level integrated system synthesis. AIAA J 38(1):164–172. doi:10.2514/2.937

    Article  Google Scholar 

  • Sobieszczanski-Sobieski J, Altus TD, Phillips M, Sandusky RR (2003) Bi-level integrated system synthesis for concurrent and distributed processing. AIAA J 41(10):1996–2003. doi:10.2514/2.1889

    Article  Google Scholar 

  • Steward DV (1981) The design structure matrix: a method for managing the design of complex systems. IEEE Trans Eng Manage 28:71–74

    Google Scholar 

  • Tosserams S, Etman LFP, Papalambros PY, Rooda JE (2006) An augmented Lagrangian relaxation for analytical target cascading using the alternating direction method of multipliers. Struct Multidisc Optim 31(3):176–189. doi:10.1007/s00158-005-0579-0

    Article  MathSciNet  Google Scholar 

  • Tosserams S, Hoftkamp AT, Etman LFP, Rooda JE (2010) A specification language for problem partitioning in decomposition-based design optimization. Struct Multidisc Optim 42:707–723. doi:10.1007/s00158-010-0512-z

    Article  Google Scholar 

  • Tufte ER (1983) The visual display of quantitative information. Graphics Press, Cheshire

    Google Scholar 

  • Wujek BA, Renaud JE, Batill SM, Brockman JB (1996) Concurrent subspace optimization using design variable sharing in a distributed computing environment. Concurr Eng 4:361–377. doi:10.1177/1063293X9600400405

    Article  Google Scholar 

  • Yassine A, Braha D (2003) Complex concurrent engineering and the design structure matrix method. Concurr Eng 11(3):165–176. doi:10.1177/106329303034503

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Justin Gray and Kenneth Moore of the OpenMDAO development team at NASA Glenn Research Center for their feedback on the diagram structure and notations, as well for their help in verifying the XDSMs for the various MDO architectures. Their suggestions substantially enhanced the quality of the final diagrams. Additional suggestions were provided by Evin Cramer, William Crossley, John Dannenhofer, Raphael Haftka, Robert Haimes, Michael Kokkolaras, and Sean Torrez. Finally, we thank one of the anonymous referees, whose comments helped us properly place our work in relation to some of the MDO literature cited herein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew B. Lambe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lambe, A.B., Martins, J.R.R.A. Extensions to the design structure matrix for the description of multidisciplinary design, analysis, and optimization processes. Struct Multidisc Optim 46, 273–284 (2012). https://doi.org/10.1007/s00158-012-0763-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-012-0763-y

Keywords

Navigation