Skip to main content
Log in

UV-C Irradiation Enhances the Quality and Shelf-Life of Stored Guava Fruit via Boosting the Antioxidant Systems and Defense Responses

  • RESEARCH
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Guava is a popular fruit of the tropics and subtropics region due to its enormous health potential. High ethylene evolution, poor postharvest handling, and insufficient postharvest treatments limit its shelf life. The present study explored the role of UV-C light (1.6, 2.0, and 2.4 kJ m−2) on physicochemical parameters, antioxidative compounds, and defense-related enzymes in cold-stored guava. The results demonstrated that UV-C (2.0 kJ m–2) significantly delayed weight loss (8.12%), firmness loss (3.94 N), and decay incidence (9.63%) in guava fruits. Likewise, UV-C treatment enhanced bioactive compounds such as total phenols (251.42 mg GAE 100 g–1 FW), flavonoids (80.86 mg CE 100 g–1 FW), ascorbic acid (160.20 mg 100 g–1 FW), and antioxidant capacity (4.17 µmol TE g–1 FW) as compared to control. The UV-C (2.0 kJ m−2) was also effective against defense enzymes reporting higher levels of catalase (2.18-fold), superoxide dismutase (1.34-fold), peroxidase (1.44-fold), and proline (1.19-fold) activity. In addition, the 2.0 kJ m−2 dose of UV-C light also displayed the elevated activity of the phenylalanine ammonia-lyase (1.71-fold) enzyme. Further, multiple linear regression analysis suggested that test defense chemicals and antioxidant systems contributed 97.62, 99.71, and 89.99% variation in physiological weight loss, firmness, and decay incidence, respectively. Finally, the current study suggests that UV-C treatment of 2.0 kJ m−2 offers a non-chemical and eco-friendly method to extend the shelf life of cold-stored guava fruits by 20 days via upregulating the levels of defense chemicals and antioxidant systems while preserving their quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  • Abdipour, M., Hosseinifarahi, M., & Naseri, N. (2019). Combination method of UV-B and UV-C prevents post-harvest decay and improves organoleptic quality of peach fruit. Scientia Horticulturae, 256, 108564. https://doi.org/10.1016/j.scienta.2019.108564

    Article  CAS  Google Scholar 

  • Abdipour, M., Sadat Malekhossini, P., Hosseinifarahi, M., & Radi, M. (2020). Integration of UV irradiation and chitosan coating: A powerful treatment for maintaining the postharvest quality of sweet cherry fruit. Scientia Horticulturae, 264, 109197. https://doi.org/10.1016/j.scienta.2020.109197

    Article  CAS  Google Scholar 

  • Adiletta, G., Zampella, L., Coletta, C., & Petriccione, M. (2019). Chitosan coating to preserve the qualitative traits and improve antioxidant system in fresh figs (Ficus carica L.). Agriculture, 9(4), 84. https://doi.org/10.3390/agriculture9040084

    Article  CAS  Google Scholar 

  • Adiletta, G., Pasquariello, M., Zampella, L., Mastrobuoni, F., Scortichini, M., & Petriccione, M. (2018). Chitosan coating: A postharvest treatment to delay oxidative stress in loquat fruits during cold storage. Agronomy, 8(4), 54. https://doi.org/10.3390/agronomy8040054

    Article  CAS  Google Scholar 

  • Amiri, A., Mortazavi, S. M. H., Ramezanian, A., Mahmoodi Sourestani, M., Mottaghipisheh, J., Iriti, M., & Vitalini, S. (2021). Prevention of decay and maintenance of bioactive compounds in strawberry by application of UV-C and essential oils. Journal of Food Measurement and Characterization, 15(6), 5310–5317. https://doi.org/10.1007/s11694-021-01095-2

    Article  Google Scholar 

  • Anjum, M. A., Akram, H., Zaidi, M., & Ali, S. (2020). Effect of gum arabic and aloe vera gel based edible coatings in combination with plant extracts on postharvest quality and storability of ‘Gola’ guava fruits. Scientia Horticulturae, 271, 109506. https://doi.org/10.1016/j.scienta.2020.109506

    Article  CAS  Google Scholar 

  • Anjum, S. A., Xie, X. Y., Wang, L. C., Saleem, M. F., Man, C., & Lei, W. (2011). Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research, 6(9), 2026–2032. https://doi.org/10.5897/AJAR10.027

    Article  Google Scholar 

  • AOAC. (2006). Official methods of analysis (18th ed.). Association of Official Analytical Chemists.

    Google Scholar 

  • Artés-Hernández, F., Robles, P. A., Gómez, P. A., Tomás-Callejas, A., Artés, F., & Martínez-Hernández, G. B. (2021). Quality changes of fresh-cut watermelon during storage as affected by cut intensity and UV-C pre-treatment. Food and Bioprocess Technology, 14, 505–517.

    Article  Google Scholar 

  • Avalos-Llano, K. R., Molina, R. S., & Sgroppo, S. C. (2020). UV-C treatment applied alone or combined with orange juice to improve the bioactive properties, microbiological, and sensory quality of fresh-cut strawberries. Food and Bioprocess Technology, 13, 1528–1543.

    Article  CAS  Google Scholar 

  • Barut Gök, S. (2021). UV-C treatment of apple and grape juices by modified UV-C reactor based on Dean vortex technology: Microbial, physicochemical and sensorial parameters evaluation. Food and Bioprocess Technology, 14, 1055–1066.

    Article  Google Scholar 

  • Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205–207. https://doi.org/10.1007/BF00018060

    Article  CAS  Google Scholar 

  • Batista Silva, W., Cosme Silva, G. M., Santana, D. B., Salvador, A. R., Medeiros, D. B., Belghith, I., da Silva, M., Cordeiro, M. H. M., & Misobutsi, G. P. (2018). Chitosan delays ripening and ROS production in guava (Psidium guajava L.) fruit. Food Chemistry, 242, 232–238. https://doi.org/10.1016/j.foodchem.2017.09.052

    Article  CAS  PubMed  Google Scholar 

  • Bhan, C., Asrey, R., Meena, N. K., Rudra, S. G., Chawla, G., Kumar, R., & Kumar, R. (2022). Guar gum and chitosan-based composite edible coating extends the shelf life and preserves the bioactive compounds in stored Kinnow fruits. International Journal of Biological Macromolecules, 222, 2922–2935. https://doi.org/10.1016/j.ijbiomac.2022.10.068

    Article  CAS  PubMed  Google Scholar 

  • Bhan, C., Asrey, R., Singh, D., Meena, N. K., Vinod, B. R., & Menaka, M. (2023). Bioefficacy of bacteria and yeast bioagents on disease suppression and quality retention of stored Kinnow mandarin fruits. Food Bioscience, 53, 102743. https://doi.org/10.1016/j.fbio.2023.102743

    Article  CAS  Google Scholar 

  • Castagna, A., & Dall’Asta, C., Chiavaro, E., Galaverna, G., & Ranieri, A. (2014). Effect of post-harvest UV-B irradiation on polyphenol profile and antioxidant activity in flesh and peel of tomato fruits. Food and Bioprocess Technology, 7, 2241–2250. https://doi.org/10.1007/s11947-013-1214-5

    Article  CAS  Google Scholar 

  • Caverzan, A., Casassola, A., & Brammer, S. P. (2016). Antioxidant responses of wheat plants under stress. Genetics and Molecular Biology, 39(1), 1–6. https://doi.org/10.1590/1678-4685-GMB-2015-0109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakraborty, P., Kumar, S., Dutta, D., & Gupta, V. (2009). Role of antioxidants in common health diseases. Research Journal of Pharmacy and Technology, 2(2), 238–244.

    CAS  Google Scholar 

  • Chance, B., & Maehly, A. C. (1955). Assay of catalases and peroxidases. Methods in Enzimology, 2, 764–775.

    Article  Google Scholar 

  • Dhakane, A. S., Patil, V. S., & Bornare, D. T. (2016). Process optimization of low alcoholic beverage from guava using different yeast and temperature combination of fermentation. International Journal of Food and Fermentation Technology, 6, 467.

    Article  Google Scholar 

  • Dhami, K. S., Asrey, R., Vinod, B. R., & Meena, N. K. (2023). Postharvest methyl jasmonate alleviates chilling injury and maintains quality of ‘Kinnow’ (Citrus nobilis Lour x C. deliciosa Tenora) fruits under differential storage temperature. Erwerbs-Obstbau, 65(5), 1667–1674. https://doi.org/10.1007/s10341-023-00880-1

    Article  CAS  Google Scholar 

  • Esua, O. J., Chin, N. L., Yusof, Y. A., & Sukor, R. (2019). Effects of simultaneous UV-C radiation and ultrasonic energy postharvest treatment on bioactive compounds and antioxidant activity of tomatoes during storage. Food Chemistry, 270, 113–122. https://doi.org/10.1016/j.foodchem.2018.07.031

    Article  CAS  PubMed  Google Scholar 

  • Etemadipoor, R., Ramezanian, A., Mirzaalian Dastjerdi, A., & Shamili, M. (2019). The potential of gum Arabic enriched with cinnamon essential oil for improving the qualitative characteristics and storability of guava ( Psidium guajava L.) fruit. Scientia Horticulturae, 251, 101–107. https://doi.org/10.1016/j.scienta.2019.03.021

    Article  CAS  Google Scholar 

  • Ghasil, I., Meena, N. K., Bhatnagar, P., Singh, H., Kumar, A., Jain, S. K., & Bhateshwar, M. (2022). Effect of postharvest treatments on biochemical and bioactive compounds of custard apple (Annona Squamosa L.) Cv. Balanagar. International Journal of Fruit Science, 22(1), 826–836. https://doi.org/10.1080/15538362.2022.2138684

    Article  Google Scholar 

  • Gogo, E. O., Förster, N., Dannehl, D., Frommherz, L., Trierweiler, B., Opiyo, A. M., Ulrichs, C. H., & Huyskens-Keil, S. (2018). Postharvest UV-C application to improve health promoting secondary plant compound pattern in vegetable amaranth. Innovative Food Science & Emerging Technologies, 45, 426–437. https://doi.org/10.1016/j.ifset.2018.01.002

    Article  CAS  Google Scholar 

  • Hasan, K., Islam, R., Hasan, M., Sarker, S. H., & Biswas, M. H. (2022). Effect of alginate edible coatings enriched with black cumin extract for improving postharvest quality characteristics of guava (Psidium guajava L.) fruit. Food and Bioprocess Technology, 15(9), 2050–2064. https://doi.org/10.1007/s11947-022-02869-2

    Article  CAS  Google Scholar 

  • Hassanein, R. A., Salem, E. A., & Zahran, A. A. (2018). Efficacy of coupling gamma irradiation with calcium chloride and lemongrass oil in maintaining guava fruit quality and inhibiting fungal growth during cold storage. Folia Horticulturae, 30(1), 67–78. https://doi.org/10.2478/fhort-2018-0007

    Article  Google Scholar 

  • Hiraga, S., Sasaki, K., Ito, H., Ohashi, Y., & Matsui, H. (2001). A large family of class III plant peroxidases. Plant and Cell Physiology, 42(5), 462–468. https://doi.org/10.1093/pcp/pce061

    Article  CAS  PubMed  Google Scholar 

  • Jagadeesh, S. L., Charles, M. T., Gariepy, Y., Goyette, B., Raghavan, G. S. V., & Vigneault, C. (2011). Influence of postharvest UV-C hormesis on the bioactive components of tomato during post-treatment handling. Food and Bioprocess Technology, 4, 1463–1472. https://doi.org/10.1007/s11947-009-0259-y

    Article  CAS  Google Scholar 

  • JanuáriaVieira, S. M., Raga, A., Benedetti, B. C., de Oliveira, R. A., Di Marco, P. G., de Scarponi, A. P., & T. (2014). Effect of ultraviolet-C radiation on “Kumagai” guavas infested by Ceratitis capitata (Diptera—Tephritidae) and on physical parameters of postharvest. Scientia Horticulturae, 165, 295–302. https://doi.org/10.1016/j.scienta.2013.11.015

    Article  CAS  Google Scholar 

  • Kabbashi, E. B. M., Saeed, I. K., & Adam, M. Y. (2017). Extending shelf life of guava fruits by mint oil and UVC treatments. International Journal of Environment, Agriculture and Biotechnology, 2(5), 2761–2769. https://doi.org/10.22161/ijeab/2.5.62

    Article  Google Scholar 

  • Kan, J., Hui, Y., Lin, X., Liu, Y., & Jin, C. (2021). Postharvest ultraviolet-C treatment of peach fruit: Changes in transcriptome profile focusing on genes involved in softening and senescence. Journal of Food Processing and Preservation, 45(10), 1–14. https://doi.org/10.1111/jfpp.15813

    Article  CAS  Google Scholar 

  • Liu, C., Zheng, H., Sheng, K., Liu, W., & Zheng, L. (2018). Effects of postharvest UV-C irradiation on phenolic acids, flavonoids, and key phenylpropanoid pathway genes in tomato fruit. Scientia Horticulturae, 241, 107–114. https://doi.org/10.1016/j.scienta.2018.06.075

    Article  CAS  Google Scholar 

  • Liu, H., Cao, J., & Jiang, W. (2015). Evaluation and comparison of vitamin C, phenolic compounds, antioxidant properties and metal chelating activity of pulp and peel from selected peach cultivars. LWT - Food Science and Technology, 63(2), 1042–1048. https://doi.org/10.1016/j.lwt.2015.04.052

    Article  CAS  ADS  Google Scholar 

  • Ma, L., Wang, Q., Li, L., Grierson, D., Yuan, S., Zheng, S., & Zuo, J. (2021). UV-C irradiation delays the physiological changes of bell pepper fruit during storage. Postharvest Biology and Technology, 180, 111506. https://doi.org/10.1016/J.POSTHARVBIO.2021.111506

    Article  CAS  Google Scholar 

  • Mahdavian, K., Ghorbanli, M., & Kalantari, K. (2008). The effects of ultraviolet radiation on the contents of chlorophyll, flavonoid, anthocyanin and proline in Capsicum annuum L. Turkish Journal of Botany, 32(1), 25–33.

    Google Scholar 

  • Manzocco, L., & Nicoli, M. C. (2015). Surface processing: Existing and potential applications of ultraviolet light. Critical Reviews in Food Science and Nutrition, 55(4), 469–484. https://doi.org/10.1080/10408398.2012.658460

    Article  CAS  PubMed  Google Scholar 

  • Mariz-Ponte, N., Martins, S., Gonçalves, A., Correia, C. M., Ribeiro, C., Dias, M. C., & Santos, C. (2019). The potential use of the UV-A and UV-B to improve tomato quality and preference for consumers. Scientia Horticulturae, 246, 777–784. https://doi.org/10.1016/j.scienta.2018.11.058

    Article  CAS  Google Scholar 

  • Michailidis, M., Karagiannis, E., Polychroniadou, C., Tanou, G., Karamanoli, K., & Molassiotis, A. (2019). Metabolic features underlying the response of sweet cherry fruit to postharvest UV-C irradiation. Plant Physiology and Biochemistry, 144, 49–57. https://doi.org/10.1016/j.plaphy.2019.09.030

    Article  CAS  PubMed  Google Scholar 

  • Mohammadi, N., Mohammadi, S., Abdossi, V., & Akbar-Boojar, M. A. (2012). Effect of UV-C radiation on antioxidant enzymes in strawberry fruit (Fragaria x ananassa cv. Camarosa). Journal of agriculture & biological sciences, 7(10), 860–864.

    Google Scholar 

  • Muhammad, I., Ashiru, S., Ibrahim, I. D., Kanoma, A. I., Sani, I., & Garba, S. (2014). Effect of ripening stage on vitamin C content in selected fruits. International Journal of Agriculture, Forestry and Fisheries, 2(3), 60–65.

    Google Scholar 

  • Paniagua, A. C., East, A. R., & Heyes, J. A. (2014). Interaction of temperature control deficiencies and atmosphere conditions during blueberry storage on quality outcomes. Postharvest Biology and Technology, 95, 50–59. https://doi.org/10.1016/j.postharvbio.2014.04.006

    Article  CAS  Google Scholar 

  • Piechowiak, T., Grzelak-Błaszczyk, K., Sójka, M., & Balawejder, M. (2020a). Changes in phenolic compounds profile and glutathione status in raspberry fruit during storage in ozone-enriched atmosphere. Postharvest Biology and Technology, 168, 111277. https://doi.org/10.1016/j.postharvbio.2020.111277

    Article  CAS  Google Scholar 

  • Piechowiak, T., Skóra, B., & Balawejder, M. (2020b). Ozone treatment induces changes in antioxidative defense system in blueberry fruit during storage. Food and Bioprocess Technology, 13(7), 1240–1245. https://doi.org/10.1007/s11947-020-02450-9

    Article  CAS  Google Scholar 

  • Pinheiro, J. C., Alegria, C. S., Abreu, M. M., Gonçalves, E. M., & Silva, C. L. (2016). Evaluation of alternative preservation treatments (water heat treatment, ultrasounds, thermosonication and UV-C radiation) to improve safety and quality of whole tomato. Food and Bioprocess Technology, 9, 924–935.

    Article  CAS  Google Scholar 

  • Prajapati, U., Asrey, R., Varghese, E., Singh, A. K., & Pal Singh, M. (2021). Effects of postharvest ultraviolet-C treatment on shelf-life and quality of bitter gourd fruit during storage. Food Packaging and Shelf Life, 28, 100665. https://doi.org/10.1016/j.fpsl.2021.100665

    Article  CAS  Google Scholar 

  • Rivera-Pastrana, D. M., Gardea, A. A., Yahia, E. M., Martínez-Téllez, M. A., & González-Aguilar, G. A. (2014). Effect of UV-C irradiation and low temperature storage on bioactive compounds, antioxidant enzymes and radical scavenging activity of papaya fruit. Journal of Food Science and Technology, 51(12), 3821–3829. https://doi.org/10.1007/s13197-013-0942-x

    Article  CAS  PubMed  Google Scholar 

  • Roshanpour, S., Tavakoli, J., Beigmohammadi, F., & Alaei, S. (2021). Improving antioxidant effect of phenolic extract of Mentha piperita using nanoencapsulation process. Journal of Food Measurement and Characterization, 15(1), 23–32. https://doi.org/10.1007/s11694-020-00606-x

    Article  Google Scholar 

  • Scandalios, J. G. (1993). Oxygen stress and superoxide dismutases. Plant Physiology, 101(1), 7–12. https://doi.org/10.1104/pp.101.1.7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Severo, J., de Oliveira, I. R., Tiecher, A., Chaves, F. C., & Rombaldi, C. V. (2015). Postharvest UV-C treatment increases bioactive, ester volatile compounds and a putative allergenic protein in strawberry. LWT - Food Science and Technology, 64(2), 685–692. https://doi.org/10.1016/j.lwt.2015.06.041

    Article  CAS  Google Scholar 

  • Sheng, K., Zheng, H., Shui, S., Yan, L., Liu, C., & Zheng, L. (2018). Comparison of postharvest UV-B and UV-C treatments on table grape: Changes in phenolic compounds and their transcription of biosynthetic genes during storage. Postharvest Biology and Technology, 138, 74–81. https://doi.org/10.1016/j.postharvbio.2018.01.002

    Article  CAS  Google Scholar 

  • Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent (pp. 152–178). https://doi.org/10.1016/S0076-6879(99)99017-1

  • Supapvanich, S., & Kijka, C. (2021). Efficiency of ultrasonic treatment on postharvest quality and bioactive compounds of “Kim Ju” guava fruit during short-term storage at room temperature. Current Applied Science and Technology, 21(2), 208–217. https://doi.org/10.14456/cast.2021.19

    Article  Google Scholar 

  • Tano, K., Oulé, M. K., Doyon, G., Lencki, R. W., & Arul, J. (2007). Comparative evaluation of the effect of storage temperature fluctuation on modified atmosphere packages of selected fruit and vegetables. Postharvest Biology and Technology, 46(3), 212–221. https://doi.org/10.1016/j.postharvbio.2007.05.008

    Article  CAS  Google Scholar 

  • Vinod, B. R., Asrey, R., Sethi, S., Prakash, J., Meena, N. K., Menaka, M., Mishra, S., & Shivaswamy, G. (2023). Recent advances in physical treatments of papaya fruit for postharvest quality retention: a review. eFood, 4(2), 1–18. https://doi.org/10.1002/efd2.79

    Article  Google Scholar 

  • Xiao, J., Gu, C., Zhu, D., Chao, H., Liang, Y., & Quan, S. (2022). Near-freezing temperature (NFT) storage alleviates chilling injury by enhancing antioxidant metabolism of postharvest guava (Psidium guajava L.). Scientia Horticulturae, 305, 111395. https://doi.org/10.1016/j.scienta.2022.111395

    Article  CAS  Google Scholar 

  • Xu, F., & Liu, S. (2017). Control of postharvest quality in blueberry fruit by combined 1-methylcyclopropene (1-MCP) and UV-C irradiation. Food and Bioprocess Technology, 10(9), 1695–1703. https://doi.org/10.1007/s11947-017-1935-y

    Article  CAS  Google Scholar 

  • Zhang, Q., Yang, W., Liu, J., Liu, H., Lv, Z., Zhang, C., et al. (2021a). Postharvest UV-C irradiation increased the flavonoids and anthocyanins accumulation, phenylpropanoid pathway gene expression, and antioxidant activity in sweet cherries (Prunus avium L.). Postharvest Biology and Technology, 175, 111490. https://doi.org/10.1016/j.postharvbio.2021.111490

    Article  CAS  Google Scholar 

  • Zhang, W., Jiang, H., Cao, J., & Jiang, W. (2021b). UV-C treatment controls brown rot in postharvest nectarine by regulating ROS metabolism and anthocyanin synthesis. Postharvest Biology and Technology, 180, 111613. https://doi.org/10.1016/j.postharvbio.2021.111613

    Article  CAS  Google Scholar 

  • Zhao, Y.-M., de Alba, M., Sun, D.-W., & Tiwari, B. (2019). Principles and recent applications of novel non-thermal processing technologies for the fish industry—A review. Critical Reviews in Food Science and Nutrition, 59(5), 728–742. https://doi.org/10.1080/10408398.2018.1495613

    Article  PubMed  Google Scholar 

  • Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555–559. https://doi.org/10.1016/S0308-8146(98)00102-2

    Article  CAS  Google Scholar 

  • Zhu, X., Jiang, J., Yin, C., Li, G., Jiang, Y., & Shan, Y. (2019). Effect of ozone treatment on flavonoid accumulation of Satsuma mandarin (Citrus unshiu Marc.) during ambient storage. Biomolecules, 9(12), 821. https://doi.org/10.3390/biom9120821

Download references

Acknowledgements

The authors thank the students and technicians of the Division of Food Science and Postharvest Technology and the Division of Fruits and Horticultural Technology (ICAR-Indian Agricultural Research Institute) for their help with fruit, laboratory, and analytical activities for this research.

Author information

Authors and Affiliations

Authors

Contributions

Menaka M: conceptualization; resources; validation; visualization; writing—original draft. Ram Asrey: supervision; validation; writing—review and editing. Vinod B R: investigation; resources; review and editing. Sajeel Ahamad: investigation; resources. Nirmal Kumar Meena: validation; review and editing. Chander Bhan and Amit Kumar Goswami: reviewing and editing.

Corresponding authors

Correspondence to Ram Asrey or B. R. Vinod.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menaka, M., Asrey, R., Vinod, B.R. et al. UV-C Irradiation Enhances the Quality and Shelf-Life of Stored Guava Fruit via Boosting the Antioxidant Systems and Defense Responses. Food Bioprocess Technol (2024). https://doi.org/10.1007/s11947-024-03338-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11947-024-03338-8

Keywords

Navigation