Skip to main content
Log in

Rheological Behavior of Tomato Juice: Steady-State Shear and Time-Dependent Modeling

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Introduction

The present work has evaluated the time-dependent and steady-state shear rheological properties of tomato juice.

Materials and Methods

Three models were compared for describing the shear stress decay during shearing (Figoni–Shoemaker, Weltman, and Hahn–Ree–Eyring), and the parameters of each model were empirically related with the shear rate.

Result

The three evaluated models, as well as their modification as function of shear rate, described well the experimental data of tomato thixotropy. The Herschel–Bulkley and Falguera–Ibarz models have shown to be very adequate to describe the data from steady-state shear. The obtained data are potentially useful for future studies on food properties and process design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abu-Jdayil, B., Banat, F., Jumah, R., Al-Asheh, S., & Hammad, S. A. (2004). comparative study of rheological characteristics of tomato paste and tomato powder solutions. International Journal of Food Properties, 7(3), 483–497.

    Article  Google Scholar 

  • Altan, A., Kus, S., & Kaya, A. (2005). Rheological behaviour and time dependent characterization of gilaboru juice (Viburnum opulus L.). Food Science and Technology International, 11(2), 129–137.

    Article  Google Scholar 

  • Basu, S., Shivharey, U. S., Raghavan, G. S. V. (2007). Time dependent rheological characteristics of pineapple jam. International Journal of Food Engineering, 3(3), article 1.

    Google Scholar 

  • Bayod, E., Mansson, P., Innings, F., Bergenstahl, B., & Tornberg, E. (2007). Low shear rheology of concentrated tomato products. Effect of particle size and time. Food Biophysics, 2, 146–157.

    Article  Google Scholar 

  • Barbana, C., & El-Omri, A. (2010). Viscometric behavior of reconstituted tomato concentrate. Food and Bioprocess Technology. doi:10.1007/s11947-009-0270-3.

  • Cepeda, E., Villarán, M. C., & Ibarz, A. (1999). Rheological properties of cloudy and clarified juice of Malus floribunda as a function of concentration and temperature. Journal of Texture Studies, 30, 481–491.

    Article  Google Scholar 

  • Choi, Y. H., & Yoo, B. (2004). Characterization of time-dependent flow properties of food suspensions. International Journal of Food Science & Technology, 39, 801–805.

    Article  CAS  Google Scholar 

  • Dak, M., Verma, R. C., Jaaffrey, S. N. A. (2008). Rheological properties of tomato concentrate. International Journal of Food Engineering, 4(7), article 11.

    Google Scholar 

  • Falguera, V., & Ibarz, A. (2010). A new model to describe flow behaviour of concentrated orange juice. Food Biophysics, 5, 114–119.

    Article  Google Scholar 

  • Falguera, V., Vélez-Ruiz, J. F., Alins, V., & Ibarz, A. (2010). Rheological behaviour of concentrated mandarin juice at low temperatures. International Journal of Food Science & Technology, 45, 2194–2200.

    Article  CAS  Google Scholar 

  • Figoni, P. I., & Shoemaker, C. F. (1983). Characterization of time dependent flow properties of mayonnaise under steady shear. Journal of Texture Studies, 14, 431–442.

    Article  Google Scholar 

  • Genovese, D. B., & Rao, M. A. (2005). Components of vane yield stress of structured food dispersions. Journal of Food Science, 70(8), E498–E504.

    Article  CAS  Google Scholar 

  • Hahn, S. J., Ree, T., & Eyring, H. (1959). Flow mechanism of thixotropic substances. Industrial and Engineering Chemistry, 51, 856–857.

    Article  CAS  Google Scholar 

  • Haminiuk, C. W. I., Sierakowski, M. R., Izidoro, D. R., & Masson, M. L. (2006). Rheological characterization of blackberry pulp. Brazilian Journal of Food Technology, 9(4), 291–296.

    Google Scholar 

  • Hayes, W. A., Smith, P. G., & Morris, A. E. J. (1998). The production and quality of tomato concentrates. Critical Reviews in Food Science and Nutrition, 38(7), 537–564.

    Article  Google Scholar 

  • Ibarz, A., & Barbosa-Cánovas, G. V. (2003). Unit operations in food engineering. Boca Raton: CRC.

    Google Scholar 

  • Lozano, J. E., & Ibarz, A. (1994). Thixotropic behavior of concentrated fruit pulps. LWT Food Science and Technology, 27, 16–18.

    Article  Google Scholar 

  • Mizrahi, S. (1997). Irreversible shear thinning and thickening of tomato juice. Journal of Food Process and Preservation, 21, 267–277.

    Article  Google Scholar 

  • Nisha, P., Singhal, R. S., Pandit, A. B. (2010). Kinetic modelling of colour degradation in tomato puree (Lycopersicon esculentum L.). Food and Bioprocess Technology. doi:10.1007/s11947-009-0300-1.

  • Ramos, A. M., & Ibarz, A. (1998). Thixotropy of orange concentrate and quince puree. Journal of Texture Studies, 29, 313–324.

    Article  Google Scholar 

  • Rao, M. A. (1999). Flow and functional models for rheological properties of fluid foods. In M. A. Rao (Ed.), Rheology of fluid and semisolid foods: principles and applications. Gaithersburg: Aspen.

    Google Scholar 

  • Ravi, R., & Bhattacharya, S. (2006). The time-dependent rheological characteristics of a chickpea flour dispersion as a function of temperature and shear rate. International Journal of Food Science & Technology, 41, 751–756.

    Article  CAS  Google Scholar 

  • Sato, A. C. K., & Cunha, R. L. (2007). Influence of temperature on the rheological behavior of jaboticaba pulp. Ciência e Tecnologia de Alimentos, 27(4), 890–896.

    Article  Google Scholar 

  • Sato, A. C. K., & Cunha, R. L. (2009). Effect of particle size on rheological properties of jaboticaba pulp. Journal of Food Engineering, 91, 566–570.

    Article  CAS  Google Scholar 

  • Silva, F. C., Guimaraes, D. H. P., & Gasparetto, C. A. (2005). Rheology of acerola juice: effects of concentration and temperature. Ciência Tecnologia de Alimentos, 25(1), 121–126. in portuguese.

    Article  Google Scholar 

  • Sun, A., & Gunasekaran, S. (2009). Yield stress in foods: measurements and applications. International Journal of Food Properties, 12, 70–101.

    Article  Google Scholar 

  • Tabilo-Munizaga, G., & Barbosa-Cánovas, G. V. (2005). Rheology for the food industry. Journal of Food Engineering, 67, 147–156.

    Article  Google Scholar 

  • Tiziani, S., & Vodovotz, Y. (2005a). Rheological characterization of a novel functional food: tomato juice with soy germ. Journal of Agricultural and Food Chemistry, 53, 7267–7273.

    Article  CAS  Google Scholar 

  • Tiziani, S., & Vodovotz, Y. (2005b). Rheological effects of soy protein addition to tomato juice. Food Hydrocolloids, 19(1), 45–52.

    Article  CAS  Google Scholar 

  • Tonon, R. V., Alexandre, D., Hubinger, M. D., & Cunha, R. L. (2009). Steady and dynamic shear rheological properties of açai pulp (Euterpe oleraceae Mart.). Journal of Food Engineering, 92, 425–431.

    Article  CAS  Google Scholar 

  • Vandresen, S., Quadri, M. G. N., Souza, J. A. R., & Hotza, D. (2009). Temperature effect on the rheological behavior of carrot juices. Journal of Food Engineering, 92, 269–274.

    Article  CAS  Google Scholar 

  • Vercet, A., Sánchez, C., Burgos, J., Montañés, L., & Buesa, P. L. (2002). The effects of manothermosonication on tomato pectic enzymes and tomato paste rheological properties. Journal of Food Engineering, 53, 273–278.

    Article  Google Scholar 

  • Weltman, R. N. (1943). Breakdown of thixotropic structure as function of time. Journal of Applied Physics, 14, 343–350.

    Article  Google Scholar 

Download references

Acknowledgments

Author PED Augusto thanks Fundación Carolina for the received fellow in the program “Movilidad de Profesores e Investigadores Brasil-España.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro E. D. Augusto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Augusto, P.E.D., Falguera, V., Cristianini, M. et al. Rheological Behavior of Tomato Juice: Steady-State Shear and Time-Dependent Modeling. Food Bioprocess Technol 5, 1715–1723 (2012). https://doi.org/10.1007/s11947-010-0472-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-010-0472-8

Keywords

Navigation