Skip to main content
Log in

Low Shear Rheology of Concentrated Tomato Products. Effect of Particle Size and Time

  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

Time-dependent rheological properties of three tomato paste suspensions in the concentration range of 200–1,000 g paste/kg suspension have been investigated by using the vane geometry at shear rates \( {\mathop \gamma \limits^ \cdot } < 10\,{\text{s}}^{{ - 1}} \). Creep tests were conducted to analyze the influence of the level of stress on the rheological behavior of the samples before and after homogenization. The experimental results indicate that the suspensions exhibit an elastic behavior at long times and relatively low stresses, which proves that this type of material can be characterized by a yield stress (σ y). Applying stresses just beyond the yield stress, an initial rheopectic behavior appeared. This increase in viscosity at low deformations was markedly larger after homogenization, and this difference was attributed to changes in the aspect ratio, shape, and orientation of the particles induced by homogenization. These structural changes were also reflected in the transient viscosity when the samples were subjected to larger stresses (σ >> σ y): before homogenization the suspensions exhibited a steady-state viscosity at large deformations, whereas after homogenization, the transient viscosity continuously decreased. That behavior was attributed to flocculation of the particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. W.A. Hayes, P.G. Smith and A.E.J. Morris, Crit Rev Food Sci 38, 537 (1998).

    Article  Google Scholar 

  2. P.A.M Steeneken, Carbohydr Polym 11, 23 (1989).

    Article  CAS  Google Scholar 

  3. M.A. Rao, Rheology of Fluid and Semisolid Foods. Principles and Applications (Aspen, 1999).

  4. M.A. Rao and H.J. Cooley, J Texture Stud 23, 415 (1992).

    Article  Google Scholar 

  5. B.S. Ghuman and Y. Singh, J Res Punjab Agric Univ 32, 295 (1995).

    Google Scholar 

  6. A.M. Dickie and J.L. Kokini, J Food Sci 48, 57 (1983).

    Article  Google Scholar 

  7. K. Autio and M. Houska, J Food Eng 13, 57 (1991).

    Article  Google Scholar 

  8. J.C. Harper and A.F. El Sahrigi, J Food Sci 30, 470 (1965).

    Article  CAS  Google Scholar 

  9. T. Tanglertpaibul and M.A. Rao, J Food Sci 52, 141 (1987).

    Article  Google Scholar 

  10. B. Yoo and M.A. Rao, J Texture Stud 25, 421 (1994).

    Article  Google Scholar 

  11. P.J. Cullen, A.P. Duffy and C.P. O’Donnell, J Food Process Preserv 25, 337 (2001).

    Article  Google Scholar 

  12. N. Dogan, M.J. McCarthy and R.L. Powell, J Food Sci 67, 2235 (2002).

    Article  CAS  Google Scholar 

  13. B. Abu-Jdayil, F. Banat, R. Jumah, S. Al-Asheh and S. Hammad, Int J Food Prop 7, 483 (2004).

    Article  Google Scholar 

  14. D. de Kee, R. K. Code and G. Turcotte, J Rheol 27, 581 (1983).

    Article  Google Scholar 

  15. D. Cheng, Rheol Acta 25, 542 (1986).

    Article  CAS  Google Scholar 

  16. E. Windhab, In: Proceedings of the 10 th International Congress on Rheology, (Sydney, 1988), p. 372.

  17. Q. Nguyen and D.V. Boger, Annu Rev Fluid Mech 24, 47 (1992).

    Article  Google Scholar 

  18. H.A. Barnes, J Non-Newton Fluid 81, 133 (1999).

    Article  CAS  Google Scholar 

  19. B. Yoo, M.A. Rao and J.F. Steffe, J Texture Stud 26, 1 (1995).

    Article  Google Scholar 

  20. M. Krulis and H. Rohm, Eur Food Res Technol 218, 598 (2004).

    Article  CAS  Google Scholar 

  21. H.A. Barnes and Q.D. Nguyen, J Non-Newton Fluid 98, 1 (2001).

    Article  CAS  Google Scholar 

  22. R.G. Larsson, The Structure and Rheology of Complex Fluids (Oxford University Press, Oxford 1999).

    Google Scholar 

  23. N.Q. Dzuy and D.V. Boger, J Rheol 27, 321 (1983).

    Article  Google Scholar 

  24. M. Whittle and E. Dickinson, J Chem Soc Faraday Trans 94, 2453 (1998).

    Article  CAS  Google Scholar 

  25. S. Tiziani and Y. Vodovotz, Food Hydrocoll 19, 45 (2005).

    Article  CAS  Google Scholar 

  26. I. Marti, O. Höfler, P. Fischer and E.J. Windhab, Rheol Acta 44, 502 (2005).

    Article  CAS  Google Scholar 

  27. E. Tornberg and G. Lundh, J Food Sci 43, 1553 (1978).

    Article  Google Scholar 

  28. F.W.C. den Ouden, Physico-chemical stability of tomato products (Ph.D. Thesis, Landbouwuniversiteit, Wageningen 1995).

  29. P.R.S. Mendes and E.S.S Dutra, Appl Rheol 14, 296 (2004).

    CAS  Google Scholar 

  30. F.W.C den Ouden and T. Van Vliet, J Food Sci 62, 565 (1997).

    Article  Google Scholar 

  31. N.Q. Dzuy and D.V. Boger, J Rheol 29, 335 (1985).

    Article  Google Scholar 

  32. C.W. Macosko, Rheology: Principles, Measurements and Applications (Wiley-Vch, New York 1994).

    Google Scholar 

  33. C.-G. Qiu and M.A. Rao, J Texture Stud 20, 57 (1989).

    Article  Google Scholar 

  34. E. Zaccarelli, G. Foffi, K.A. Dawson, F. Sciortino and P. Tartaglia, Phys Rev E 63, 031501 (2001).

    Article  CAS  Google Scholar 

  35. K.A. Dawson, Curr Opin Colloid Interface Sci 7, 218 (2002).

    Article  CAS  Google Scholar 

  36. R. Buscall, P.D.A. Mills, J.W. Goodwin and D.W. Lawson, J Chem Soc Faraday Trans I 84, 4249 (1988).

    Article  CAS  Google Scholar 

  37. R. Buscall, I.J. McGowan, P.D.A. Mills, R.F. Stewart, D. Sutton, L.R. White and G.E. Yates, J Non-Newton Fluid 24, 183 (1987).

    Article  CAS  Google Scholar 

  38. F. Pignon, A. Magnin, J.-M. Piau, B. Cabane, P. Lindner and O. Diat, Phys Rev E 56, 3281 (1997).

    Article  CAS  Google Scholar 

  39. S.E. Barbosa, D.R. Ercoli, M.A. Bibbó and J.M. Kenny, Compos Struct 27, 83 (1994).

    Article  Google Scholar 

  40. G.B. Jeffery, In: The Structure and Rheology of Complex Fluids, edited by R.G. Larsson (Oxford University Press, Oxford 1999).

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank Orkla Foods A.S. for providing the tomato paste samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Bayod.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bayod, E., Månsson, P., Innings, F. et al. Low Shear Rheology of Concentrated Tomato Products. Effect of Particle Size and Time. Food Biophysics 2, 146–157 (2007). https://doi.org/10.1007/s11483-007-9039-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-007-9039-2

Keywords

Navigation