Skip to main content
Log in

An investigation on the effects of concentration and temperature on the time-independent rheological behavior of peach syrup

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Understanding the rheological properties of fluid foods, especially their viscosities, plays an important role in determining the quality control and design of equipment for food industry plants. Hence, in this research, the time-independent rheological behavior of peach syrup was determined using a Brookfield viscometer, and the effects of concentrations at 35, 40, 45, and 50 °Brix, and temperatures at 15, 25, 35, 45, 55, and 65 °C were investigated in a range of 1.4-49.78 s−1 shear rate. To investigate the rheological effect of these parameters, the shear stress and apparent viscosity parameters were plotted at different shear rates. To describe the time-independent behavior of peach syrups, Power law, Bingham, Casson, and Herschel–Bulkley models were used; among these models, the Power law model with an R2 of 0.9980, the root mean square error (RMSE) of 3.2717, and the Chi square (χ2) of 20.2782 was determined as the best one for the description of shear stress-shear rate diagrams. Furthermore, the dependence of consistency coefficient obtained from the Power law model on temperature parameter was investigated using the Arrhenius model, and the dependence of consistency coefficient on concentration parameter was determined using the Power and exponential models. Overall, the results showed that peach syrup had a non-Newtonian pseudo-plastic behavior. The investigations also showed that an increase in the concentration of peach syrup led to enhancing the apparent viscosity of the samples, while an increase in the temperature and shear rate reduced the apparent viscosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. D.H. Murdock, Encyclopedia of Foods: A Guide to Healthy Nutrition. (Academic Press, 2002). https://doi.org/10.1146/annurev.nu.25.062205.100003

  2. H. Liu, J. Cao, W. Jiang, Changes in phenolics and antioxidant property of peach fruit during ripening and responses to 1-methylcyclopropene. Postharvest Biol. Technol. 108, 111–118 (2015)

    Article  CAS  Google Scholar 

  3. A.B. Garcia Loredo, S.N. Guerrero, S.M. Alzamora, Inactivation kinetics and growth dynamics during cold storage of Escherichia coli ATCC 11229, Listeria innocua ATCC 33090 and Saccharomyces cerevisiae KE162 in peach juice using aqueous ozone. Innov. Food Sci. Emerg. Technol. 29, 271–279 (2015)

    Article  CAS  Google Scholar 

  4. Esna, Peach production in Iran. Jame Jam (Iran) (2012)

  5. R. Vásquez-Villanueva, M.L. Marina, M.C. García, Revalorization of a peach (Prunus persica (L.) Batsch) byproduct: extraction and characterization of ACE-inhibitory peptides from peach stones. J. Funct. Foods. 18, 137–146 (2015)

    Article  Google Scholar 

  6. M.C. Quek, N.L. Chin, Y.A. Yusof, Modelling of rheological behaviour of soursop juice concentrates using shear rate–temperature–concentration superposition. J. Food Eng. 118, 380–386 (2013)

    Article  Google Scholar 

  7. J. Ahmed, H.S. Ramaswamy, K.C. Sashidhar, Rheological characteristics of tamarind (Tamarindus indica L.) juice concentrates. LWT - Food Sci. Technol. 40, 225–231 (2007)

    Article  CAS  Google Scholar 

  8. J. Giner, A. Ibarz, S. Garza, S. Xhian-Quan, Rheology of clarified cherry juices. J. Food Eng. 30, 147–154 (1996)

    Article  Google Scholar 

  9. P. Naknean, M. Meenune, Impact of clarification of palm sap and processing method on the quality of palm sugar syrup (Borassus flabellifer Linn.). (2014). https://doi.org/10.1007/s12355-014-0308-3

  10. I.M.L.B. Avila, C.L.M. Silva, Modelling kinetics of thermal degradation of colour in peach puree. J. Food Eng. 39(2), 161–166 (1996)

    Article  Google Scholar 

  11. M.C. Bourne, Food Texture and Viscosity: Concept and Measurement. (Academic Press, 2002)

  12. M. Dak, R.C. Verma, S.N.A. Jaaffrey, Effect of temperature and concentration on Rheological properties of ‘Kesar’ mango juice. J. Food Eng. 80, 1011–1015 (2007)

    Article  Google Scholar 

  13. S. Karaman, M.T. Yilmaz, A. Kayacier, M. Dogan, H. Yetim, Steady shear rheological characteristics of model system meat emulsions: Power law and exponential type models to describe effect of corn oil concentration. J. Food Sci. Technol. 52, 3851–3858 (2015)

    CAS  Google Scholar 

  14. M. Marcotte, A.R.T. Hoshahili, H.S. Ramaswamy, Rheological properties of selected hydrocolloids as a function of concentration and temperature. Food Res. Int. 34, 695–703 (2001)

    Article  CAS  Google Scholar 

  15. C.I. Nindo, J. Tang, J.R. Powers, P.S. Takhar, Rheological properties of blueberry puree for processing applications. LWT - Food Sci. Technol. 40, 292–299 (2007)

    Article  CAS  Google Scholar 

  16. S.M.A. Razavi, M.B. Habibi Najafi, Z. Alaee, The time independent rheological properties of low fat sesame paste/date syrup blends as a function of fat substitutes and temperature. Food Hydrocoll. 21, 198–202 (2007)

    Article  CAS  Google Scholar 

  17. C. Barbana, A. El-Omri, Viscometric behavior of reconstituted tomato concentrate. Food Bioprocess Technol. 5, 209–215 (2012)

    Article  CAS  Google Scholar 

  18. K. Gabsi, M. Trigui, S. Barrington, A.N. Helal, A.R. Taherian, Evaluation of rheological properties of date syrup. J. Food Eng. 117, 165–172 (2013)

    Article  Google Scholar 

  19. S. Taghian Dinani, N. Hamdami, M. Shahedi, M. Havet, Mathematical modeling of hot air/electrohydrodynamic (EHD) drying kinetics of mushroom slices. Energy Convers. Manag. 86, 70–80 (2014)

    Article  Google Scholar 

  20. M. Goksel et al., The effect of starch concentration and temperature on grape molasses: rheological and textural properties. Food Bioprocess Technol. 6, 259–271 (2013)

    Article  CAS  Google Scholar 

  21. S. Karaman, A. Kayacier, Effect of temperature on rheological characteristics of molasses: modeling of apparent viscosity using adaptive neuro – fuzzy inference system (ANFIS). LWT - Food Sci. Technol. 44, 1717–1725 (2011)

    Article  CAS  Google Scholar 

  22. L. Juszczak, T. Fortuna, Effect of temperature and soluble solid content on the viscosity of cherry juice concentrate. Int. Agrophys. 18, 17–21 (2004)

    Google Scholar 

  23. A. Kaya, K.B. Belibaǧlı, Rheology of solid Gaziantep Pekmez. J. Food Eng. 54, 221–226 (2002)

    Article  Google Scholar 

  24. S. Basu, U.S. Shivhare, Rheological, Textural, microstructural, and sensory properties of sorbitol-substituted mango jam. J. Food Eng. 100, 357–365 (2010)

    Article  CAS  Google Scholar 

  25. N.L. Chin, S.M. Chan, Y.A. Yusof, T.G. Chuah, R.A. Talib, Modelling of rheological behaviour of pummelo juice concentrates using master-curve. J. Food Eng. 93, 134–140 (2009)

    Article  CAS  Google Scholar 

  26. M. Dolores Alvarez, W. Canet, Time-independent and time-dependent rheological characterization of vegetable-based infant purees. J. Food Eng. 114, 449–464 (2013)

    Article  Google Scholar 

  27. J. Liu et al., Rheological properties of sewage sludge during enhanced anaerobic digestion with microwave-H2O2 pretreatment. Water Res. 98, 98–108 (2016)

    Article  CAS  Google Scholar 

  28. E. Arslan, M.E. Yener, A. Esin, Rheological characterization of tahin/pekmez (sesame paste/concentrated grape juice) blends. J. Food Eng. 69, 167–172 (2005)

    Article  Google Scholar 

  29. S. Vandresen, M.G.N. Quadri, J.A.R. de Souza, D. Hotza, Temperature effect on the rheological behavior of carrot juices. J. Food Eng. 92, 269–274 (2009)

    Article  CAS  Google Scholar 

  30. M. Maskan, F. Gogus, Effect of sugar on the rheological properties of sunflower oil in water emulsions. J. Food Eng. 43, 173–177 (2000)

    Article  Google Scholar 

  31. M. Sengül, M. Fatih Ertugay, M. Sengül, Rheological, physical and chemical characteristics of mulberry pekmez. Food Control. 16, 73–76 (2005)

    Article  Google Scholar 

  32. M. Alpaslan, M. Hayta, Rheological and sensory properties of pekmez (grape molasses)/tahin (sesame paste) blends. J. Food Eng. 54, 89–93 (2002)

    Article  Google Scholar 

  33. A. Koocheki, S.A. Mortazavi, F. Shahidi, S.M.A. Razavi, A.R. Taherian, Rheological properties of mucilage extracted from Alyssum homolocarpum seed as a new source of thickening agent. J. Food Eng. 91, 490–496 (2009)

    Article  CAS  Google Scholar 

  34. B. Abu-jdayil, F. Banat, R. Jumah, S. Al-Asheh, S. Hammad, A comparative study of rheological characteristics of tomato paste and tomato powder solutions. Int. J. Food Prop. 7, 483–497 (2004)

    Article  Google Scholar 

  35. D.E. Jimenez-Sánchez et al., Effect of addition of native agave fructans on spray-dried chayote (Sechium edule) and pineapple (Ananas comosus) juices: rheology, microstructure, and water sorption. Food Bioprocess Technol. 10, 2069–2080 (2017)

    Article  Google Scholar 

  36. M. Khalil, B.M. Jan, A.A.A. Raman, Rheological and statistical evaluation of nontraditional lightweight completion fluid and its dependence on temperature. J. Pet. Sci. Eng. 77, 27–33 (2011)

    Article  CAS  Google Scholar 

  37. X. Peng et al., Effects of pH and high hydrostatic pressure on the structural and rheological properties of sugar beet pectin. Food Hydrocoll. 60, 161–169 (2016)

    Article  CAS  Google Scholar 

  38. T. Wang, M. Zhang, Z. Fang, Y. Liu, Z. Gao, Rheological, Textural and flavour properties of yellow mustard sauce as affected by modified starch, xanthan and guar gum. Food Bioprocess Technol. 9, 849–858 (2016)

    Article  CAS  Google Scholar 

  39. M. Dak, R.C. Verma, G.P. Sharma, Flow characteristics of juice of ‘Totapuri’ mangoes. J. Food Eng. 76, 557–561 (2006)

    Article  Google Scholar 

  40. H. Yoğurtçu et al., Determination of rheological properties of some pekmez samples in Turkey. J. Food Eng. 77, 1064–1068 (2006)

    Article  Google Scholar 

  41. R. Maceiras, E. Alvarez, M.A. Cancela, Rheological properties of fruit purees: effect of cooking. J. Food Eng. 80, 763–769 (2007)

    Article  CAS  Google Scholar 

  42. S.H. Hosseini-parvar, L. Matia-merino, K.K.T. Goh, S.M.A. Razavi, S.A. Mortazavi, Steady shear flow behavior of gum extracted from Ocimum basilicum L. seed: effect of concentration and temperature. J. Food Eng. 101, 236–243 (2010)

    Article  Google Scholar 

  43. A. Kaya, N. Sozer, Rheological behaviour of sour pomegranate juice concentrates (Punica granatum L.). Int. J. Food Sci. Technol. 40, 223–227 (2005)

    Article  CAS  Google Scholar 

  44. P.S. Deshmukh, S.S. Manjunatha, P.S. Raju, Rheological behaviour of enzyme clarified sapota (Achras sapota L.) juice at different concentration and temperatures. J. Food Sci. Technol. 52, 1896–1910 (2015)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somayeh Taghian Dinani.

Additional information

Abbas Moallemi-Oreh—Deceased.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eslami Fard, A., Taghian Dinani, S. & Moallemi-Oreh, A. An investigation on the effects of concentration and temperature on the time-independent rheological behavior of peach syrup. Food Measure 12, 1303–1315 (2018). https://doi.org/10.1007/s11694-018-9744-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-018-9744-1

Keywords

Navigation