Skip to main content

Rheology of Shear Thickening Fluid

  • Chapter
  • First Online:
Shear Thickening Fluid

Abstract

Performing a complete rheological characterization of shear thickening fluid (STF) is of paramount importance from different perspectives. From the point of view of the formulation, rheology will help not only in the selection of the right particle shape and size, its concentration, the carrier fluid, etc., but also in the evaluation of the dispersing protocol and in the assessment of its shelf life and stability. Moreover, rheology provides valuable information about the mechanism responsible for the shear thickening behavior in the chosen formulation, which may be important regarding its final application. From this latter perspective, in their application in real products, STF will undergo complex flows, which are a combination of shear and extensional rates of deformation; therefore, the mere information regarding the dependence of the viscosity on the shear rate is simply insufficient to predict the performance of the STF. Finally, a complete rheological characterization is required to provide useful information for developing and validating new and more realistic constitutive models for STF. This chapter presents an extensive revision of the current state of the art regarding the rheological characterization of STF under conventional rheometric flows and non-conventional experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BET:

Back extrusion technique

CST:

Continuous shear thickening

CSR:

Controlled shear rate

CSS:

Controlled shear stress

DST:

Discontinuous shear thickening

d 0 :

Initial diameter (m)

d f :

Final diameter (m)

d min :

Minimum diameter (m)

F :

Force (N)

g :

Gravitational acceleration (m2/s)

G :

Storage modulus (Pa)

G ′′ :

Loss modulus (Pa)

h 0 :

Initial height

L :

Length (m)

LAOS:

Large amplitude oscillatory shear

LVR:

Linear viscoelastic region

MRSTF:

Magnetorheological shear thickening fluid

N 1 :

First normal stress difference

N 2 :

Second normal stress difference

PCC:

Precipitated calcium carbonate

Q :

Flow rate (m3/s)

r :

Radius (m)

SAOS:

Small amplitude oscillatory shear

SBE:

Short back extrusion

SHPB:

Split-Hopkinson pressure bar

STF:

Shear thickening fluid

t :

Time (s)

wt :

Mass fraction (%)

δ :

Phase angle (rad)

p:

Pressure drop (Pa)

γ :

Strain

\( \dot{\gamma} \) :

Shear rate (s−1)

\( {\dot{\gamma}}_w \) :

Shear rate at wall (s−1)

\( \dot{\epsilon} \) :

Extension rate (s−1)

η :

Shear viscosity (Pa∙s)

η + :

Transient viscosity (Pa∙s)

Λ0:

Initial aspect ratio

ρ :

Density (kg/m3)

σ :

Surface tension (N/m)

τ :

Shear stress (Pa)

τ w :

Shear stress at wall (Pa)

\( {\varPsi}_1^{+} \) :

First normal stress coefficient

\( {\varPsi}_2^{+} \) :

Second normal stress coefficient

ω :

Angular frequency (rad/s)

References

  1. F.A. Morrison, A.P.C.E.F.A. Morrison, Understanding Rheology (Oxford University Press, 2001) https://books.google.pt/books?id=bwTn8ZbR0C4C

    Google Scholar 

  2. F.J. Galindo-Rosales, Complex fluids and Rheometry in microfluidics, in Complex Fluid-Flows in Microfluidics, ed. by F.J. Galindo-Rosales, (Springer International Publishing, Cham, 2018), pp. 1–23

    Chapter  Google Scholar 

  3. R. Ewoldt, M. Johnston, Caretta L (How to Avoid Bad Data, Experimental Challenges of Shear Rheology, 2015), pp. 207–241

    Google Scholar 

  4. Official symbols and nomenclature of the Society of Rheology. J. Rheol. 57(4), 1047–1055 (2013). https://doi.org/10.1122/1.4811184

  5. F.J. Galindo-Rosales, M.A. Alves, M.S.N. Oliveira, Microdevices for extensional rheometry of low viscosity elastic liquids: A review. Microfluid. Nanofluid. 14(1), 1–19 (2013). https://doi.org/10.1007/s10404-012-1028-1

    Article  CAS  Google Scholar 

  6. S. Gürgen, M.C. Kuşhan, W. Li, Shear thickening fluids in protective applications: A review. Prog. Polym. Sci. 75, 48–72 (2017) https://www.sciencedirect.com/science/article/pii/S0079670017300035

    Article  Google Scholar 

  7. E. Brown, H.M. Jaeger, Shear thickening in concentrated suspensions: Phenomenology, mechanisms and relations to jamming. Rep. Prog. Phys. 77(4), 046602 (2014). https://doi.org/10.1088/0034-4885/77/4/046602

    Article  Google Scholar 

  8. F.J. Galindo-Rosales, F.J. Rubio-Hernández, A. Sevilla, An apparent viscosity function for shear thickening fluids. J. Non-Newtonian Fluid Mech. 166(5), 321–325 (2011) https://www.sciencedirect.com/science/article/pii/S0377025711000024

    Article  CAS  Google Scholar 

  9. E. Brown, H.M. Jaeger, Through thick and thin. Science 333(6047), 1230–1231 (2011). https://doi.org/10.1126/science.1211155

    Article  CAS  Google Scholar 

  10. H.A. Barnes, Shear-thickening (“Dilatancy”) in suspensions of nonaggregating solid particles dispersed in Newtonian liquids. J. Rheol. 33(2), 329–366 (1989). https://doi.org/10.1122/1.550017

    Article  CAS  Google Scholar 

  11. N.J. Wagner, J.F. Brady, Shear thickening in colloidal dispersions. Phys. Today 62(10), 27–32 (2009) https://www.scopus.com/inward/record.uri?eid=2-s2.0-70349779635&doi=10.1063%2f1.3248476&partnerID=40&md5=96a696a15746a2d14f974ec019d87f7c

    Article  CAS  Google Scholar 

  12. T.G. Mezger, C. Sprinz, A. Green, Applied Rheology: With Joe Flow on Rheology Road (Anton Paar, 2018) https://books.google.pt/books?id=xmgBjwEACAAJ

    Google Scholar 

  13. F.J. Galindo-Rosales, Complex fluids in energy dissipating systems. Appl. Sci. 6(8), 206 (2016)

    Article  Google Scholar 

  14. A. Fakhari, F.J. Galindo-Rosales, Parametric analysis of the transient back extrusion flow to determine instantaneous viscosity. Phys. Fluids 33(3), 033602 (2021). https://doi.org/10.1063/5.0033560

    Article  CAS  Google Scholar 

  15. J. Mewis, N.J. Wagner, Colloidal Suspension Rheology (Cambridge University Press, Cambridge, 2011) https://www.cambridge.org/core/books/colloidal-suspension-rheology/E4C1D16944B043534881158BC62D3E59

    Book  Google Scholar 

  16. G. Bossis, Y. Grasselli, O. Volkova, Capillary flow of a suspension in the presence of discontinuous shear thickening. Rheol. Acta 61(1), 1–12 (2022). https://doi.org/10.1007/s00397-021-01305-0

    Article  CAS  Google Scholar 

  17. A. Fall, A. Lemaître, F. Bertrand, D. Bonn, G. Ovarlez, Shear thickening and migration in granular suspensions. Phys. Rev. Lett. 105(26), 268303 (2010). https://doi.org/10.1103/PhysRevLett.105.268303

    Article  CAS  Google Scholar 

  18. F. Galindo-Rosales, F. Rubio-Hernández, J. Velázquez-Navarro, Shear-thickening behavior of Aerosil® R816 nanoparticles suspensions in polar organic liquids. Rheol. Acta 48, 699–708 (2009). https://doi.org/10.1007/s00397-009-0367-7

    Article  CAS  Google Scholar 

  19. Y. Madraki, S. Hormozi, G. Ovarlez, É. Guazzelli, O. Pouliquen, Enhancing shear thickening. Phys. Rev. Fluids 2(3), 033301 (2017). https://doi.org/10.1103/PhysRevFluids.2.033301

    Article  Google Scholar 

  20. A. Fall, N. Huang, F. Bertrand, G. Ovarlez, D. Bonn, Shear thickening of Cornstarch suspensions as a Reentrant jamming transition. Phys. Rev. Lett. 100(1), 018301 (2008). https://doi.org/10.1103/PhysRevLett.100.018301

    Article  CAS  Google Scholar 

  21. J.M. Dealy, J. Wang, Viscosity and normal stress differences, in Melt Rheology and its Applications in the Plastics Industry, ed. by J.M. Dealy, J. Wang, (Springer Netherlands, Dordrecht, 2013), pp. 19–47

    Chapter  Google Scholar 

  22. C.D. Cwalina, N.J. Wagner, Material properties of the shear-thickened state in concentrated near hard-sphere colloidal dispersions. J. Rheol. 58(4), 949–967 (2014). https://doi.org/10.1122/1.4876935

    Article  CAS  Google Scholar 

  23. C.W. Macosko, Rheology: Principles, Measurements, and Applications (VCH, New York, NY, 1994)

    Google Scholar 

  24. H.M. Laun, Normal stresses in extremely shear thickening polymer dispersions. J. Non-Newtonian Fluid Mech. 54, 87–108 (1994) https://www.sciencedirect.com/science/article/pii/0377025794800162

    Article  CAS  Google Scholar 

  25. R.J.E. Andrade, A.R. Jacob, F.J. Galindo-Rosales, L. Campo-Deaño, Q. Huang, O. Hassager, et al., Dilatancy in dense suspensions of model hard-sphere-like colloids under shear and extensional flow. J. Rheol. 64(5), 1179–1196 (2020). https://doi.org/10.1122/1.5143653

    Article  CAS  Google Scholar 

  26. Z. Pan, H. de Cagny, M. Habibi, D. Bonn, Normal stresses in shear thickening granular suspensions. Soft Matter 13(20), 3734–3740 (2017). https://doi.org/10.1039/C7SM00167C

    Article  CAS  Google Scholar 

  27. O. Maklad, R.J. Poole, A review of the second normal-stress difference; its importance in various flows, measurement techniques, results for various complex fluids and theoretical predictions. J. Non-Newtonian Fluid Mech. 292, 104522 (2021) https://www.sciencedirect.com/science/article/pii/S0377025721000458

    Article  CAS  Google Scholar 

  28. J.F. Morris, Shear thickening of concentrated suspensions: Recent developments and relation to other phenomena. Annu. Rev. Fluid Mech. 52(1), 121–144 (2020). https://doi.org/10.1146/annurev-fluid-010816-060128

    Article  Google Scholar 

  29. E. Brown, H.M. Jaeger, The role of dilation and confining stresses in shear thickening of dense suspensions. J. Rheol. 56(4), 875–923 (2012). https://doi.org/10.1122/1.4709423

    Article  CAS  Google Scholar 

  30. S. Garland, G. Gauthier, J. Martin, J.F. Morris, Normal stress measurements in sheared non-Brownian suspensions. J. Rheol. 57(1), 71–88 (2012). https://doi.org/10.1122/1.4758001

    Article  CAS  Google Scholar 

  31. W. Wu, K. Zeng, B. Zhao, F. Duan, F. Jiang, New considerations on the determination of the apparent shear viscosity of polymer melt with micro capillary dies. Polymers 13(24), 4451 (2021). https://doi.org/10.3390/polym13244451

    Article  CAS  Google Scholar 

  32. P.J. Carreau, D.C.R. De Kee, R.P. Chhabra, 3- Rheometry, in Rheology of Polymeric Systems, ed. by P.J. Carreau, D.C.R. De Kee, R.P. Chhabra, 2nd edn., (Hanser, 2021), pp. 69–130

    Chapter  Google Scholar 

  33. C.J. Pipe, T.S. Majmudar, G.H. McKinley, High shear rate viscometry. Rheol. Acta 47(5), 621–642 (2008). https://doi.org/10.1007/s00397-008-0268-1

    Article  CAS  Google Scholar 

  34. G. Bossis, O. Volkova, Y. Grasselli, O. Gueye, Discontinuous shear thickening in concentrated suspensions. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 377(2143), 20180211 (2019). https://doi.org/10.1098/rsta.2018.0211

    Article  CAS  Google Scholar 

  35. M. Wyart, M.E. Cates, Discontinuous shear thickening without inertia in dense non-Brownian suspensions. Phys. Rev. Lett. 112(9), 098302 (2014). https://doi.org/10.1103/PhysRevLett.112.098302

    Article  CAS  Google Scholar 

  36. G. Bossis, Y. Grasselli, A. Ciffreo, O. Volkova, Tunable discontinuous shear thickening in capillary flow of MR suspensions. J. Intell. Mater. Syst. Struct. 32(12), 1349–1357 (2020). https://doi.org/10.1177/1045389X20959458

    Article  CAS  Google Scholar 

  37. S.R. Waitukaitis, H.M. Jaeger, Impact-activated solidification of dense suspensions via dynamic jamming fronts. Nature 487(7406), 205–209 (2012). https://doi.org/10.1038/nature11187

    Article  CAS  Google Scholar 

  38. I.R. Peters, H.M. Jaeger, Quasi-2D dynamic jamming in cornstarch suspensions: Visualization and force measurements. Soft Matter 10(34), 6564–6570 (2014). https://doi.org/10.1039/C4SM00864B

    Article  CAS  Google Scholar 

  39. R. Maharjan, S. Mukhopadhyay, B. Allen, T. Storz, E. Brown, Constitutive relation for the system-spanning dynamically jammed region in response to impact of cornstarch and water suspensions. Phys. Rev. E 97(5), 052602 (2018). https://doi.org/10.1103/PhysRevE.97.052602

    Article  Google Scholar 

  40. S. Gürgen, M.A. Sofuoğlu, M.C. Kuşhan, Rheological compatibility of multi-phase shear thickening fluid with a phenomenological model. Smart Mater. Struct. 28(3), 035027 (2019). https://doi.org/10.1088/1361-665X/ab018c

    Article  Google Scholar 

  41. M. Wei, L. Sun, P. Qi, C. Chang, C. Zhu, Continuous phenomenological modeling for the viscosity of shear thickening fluids. Nanomater. Nanotechnol. 8, 1847980418786551 (2018). https://doi.org/10.1177/1847980418786551

    Article  Google Scholar 

  42. A. Ghosh, I. Chauhan, A. Majumdar, B.S. Butola, Influence of cellulose nanofibers on the rheological behavior of silica-based shear-thickening fluid. Cellulose 24(10), 4163–4171 (2017). https://doi.org/10.1007/s10570-017-1440-5

    Article  CAS  Google Scholar 

  43. M. Wei, K. Lin, L. Sun, Shear thickening fluids and their applications. Mater. Des. 216, 110570 (2022) https://www.sciencedirect.com/science/article/pii/S0264127522001915

    Article  CAS  Google Scholar 

  44. K. Lin, J. Qi, H. Liu, M. Wei, H. Peng, A phenomenological theory-based viscosity model for shear thickening fluids. Mater. Res. Express. 9, 015701 (2022)

    CAS  Google Scholar 

  45. J. David, P. Filip, A.A. Kharlamov, Empirical modelling of nonmonotonous behaviour of shear viscosity. Adv. Mater. Sci. Eng. 2013, 658187 (2013). https://doi.org/10.1155/2013/658187

    Article  Google Scholar 

  46. M. Wei, K. Lin, Q. Guo, H. Sun, Characterization and performance analysis of a shear thickening fluid damper. Meas. Control 52, 002029401881954 (2019)

    Article  Google Scholar 

  47. F.J. Galindo-Rosales, F.J. Rubio-Hernández, A. Sevilla, R.H. Ewoldt, How Dr. Malcom M. cross may have tackled the development of “an apparent viscosity function for shear thickening fluids”. J. Non-Newtonian Fluid Mech. 166(23), 1421–1424 (2011) https://www.sciencedirect.com/science/article/pii/S0377025711002011

    Article  CAS  Google Scholar 

  48. T. Shende, V.J. Niasar, M. Babaei, An empirical equation for shear viscosity of shear thickening fluids. J. Mol. Liq. 325, 115220 (2021) https://www.sciencedirect.com/science/article/pii/S0167732220374626

    Article  CAS  Google Scholar 

  49. S. Khandavalli, J.A. Lee, M. Pasquali, J.P. Rothstein, The effect of shear-thickening on liquid transfer from an idealized gravure cell. J. Non-Newtonian Fluid Mech. 221, 55–65 (2015) https://www.sciencedirect.com/science/article/pii/S0377025715000592

    Article  CAS  Google Scholar 

  50. R. Maharjan, E. Brown, Giant deviation of a relaxation time from generalized Newtonian theory in discontinuous shear thickening suspensions. Phys. Rev. Fluids. 2(12), 123301 (2017). https://doi.org/10.1103/PhysRevFluids.2.123301

    Article  Google Scholar 

  51. F.J. Rubio-Hernández, J.H. Sánchez-Toro, N.M. Páez-Flor, Testing shear thinning/thixotropy and shear thickening/antithixotropy relationships in a fumed silica suspension. J. Rheol. 64(4), 785–797 (2020). https://doi.org/10.1122/1.5131852

    Article  CAS  Google Scholar 

  52. V. Rathee, D.L. Blair, J.S. Urbach, Localized stress fluctuations drive shear thickening in dense suspensions. Proc. Natl. Acad. Sci. 114(33), 8740–8745 (2017). https://doi.org/10.1073/pnas.1703871114

    Article  CAS  Google Scholar 

  53. M. Tassieri, J. Ramírez, N.C. Karayiannis, S.K. Sukumaran, Y. Masubuchi, I-Rheo GT: Transforming from time to frequency domain without artifacts. Macromolecules 51(14), 5055–5068 (2018). https://doi.org/10.1021/acs.macromol.8b00447

    Article  CAS  Google Scholar 

  54. R. Rivas-Barbosa, M.A. Escobedo-Sánchez, M. Tassieri, M. Laurati, I-Rheo: Determining the linear viscoelastic moduli of colloidal dispersions from step-stress measurements. Phys. Chem. Chem. Phys. 22(7), 3839–3848 (2020). https://doi.org/10.1039/C9CP06191F

    Article  CAS  Google Scholar 

  55. F. Juliusburger, A. Pirquet, Thixotropy and rheopexy of V2O5-sols. Trans. Faraday Soc. 32, 445–452 (1936). https://doi.org/10.1039/TF9363200445

    Article  CAS  Google Scholar 

  56. J. Mewis, Thixotropy - a general review. J. Non-Newtonian Fluid Mech. 6(1), 1–20 (1979) https://www.sciencedirect.com/science/article/pii/0377025779870019

    Article  CAS  Google Scholar 

  57. J. Lyklema, H. Van Olphen, Terminology and symbols in colloid and surface chemistry part 1.13. Definitions, terminology and symbols for rheological properties. Pure Appl. Chem. 51(5), 1213–1218 (1979). https://doi.org/10.1351/pac197951051213

    Article  Google Scholar 

  58. R.G. Larson, Y. Wei, A review of thixotropy and its rheological modeling. J. Rheol. 63(3), 477–501 (2019). https://doi.org/10.1122/1.5055031

    Article  CAS  Google Scholar 

  59. J.H. Cho, A.H. Griese, I.R. Peters, I. Bischofberger, Lasting effects of discontinuous shear thickening in cornstarch suspensions upon flow cessation. Phys. Rev. Fluids. 7(6), 063302 (2022). https://doi.org/10.1103/PhysRevFluids.7.063302

    Article  Google Scholar 

  60. Z. Pan, H. de Cagny, B. Weber, D. Bonn, $\mathsf{S}$-shaped flow curves of shear thickening suspensions: Direct observation of frictional rheology. Phys. Rev. E 92(3), 032202 (2015). https://doi.org/10.1103/PhysRevE.92.032202

    Article  CAS  Google Scholar 

  61. R.P. Chhabra, J.F. Richardson, Chapter 1 - Non-Newtonian fluid behaviour, in Non-Newtonian Flow in the Process Industries, ed. by R.P. Chhabra, J.F. Richardson, (Butterworth-Heinemann, Oxford, 1999), pp. 1–36

    Google Scholar 

  62. F.J. Galindo-Rosales, F.J. Rubio-Hernández, Transient study on the shear thickening behaviour of surface modified Fumed silica suspensions in polypropylene glycol. AIP Conf. Proc. 1027(1), 686–688 (2008). https://doi.org/10.1063/1.2964809

    Article  CAS  Google Scholar 

  63. Y. Wei, M.J. Solomon, R.G. Larson, A multimode structural kinetics constitutive equation for the transient rheology of thixotropic elasto-viscoplastic fluids. J. Rheol. 62(1), 321–342 (2017). https://doi.org/10.1122/1.4996752

    Article  CAS  Google Scholar 

  64. X. Cheng, H. McCoy Jonathan, N. Israelachvili Jacob, I. Cohen, Imaging the microscopic structure of shear thinning and thickening colloidal suspensions. Science 333(6047), 1276–1279 (2011). https://doi.org/10.1126/science.1207032

    Article  CAS  Google Scholar 

  65. V. Rathee, D.L. Blair, J.S. Urbach, Dynamics and memory of boundary stresses in discontinuous shear thickening suspensions during oscillatory shear. Soft Matter 17(5), 1337–1345 (2021). https://doi.org/10.1039/D0SM01917H

    Article  CAS  Google Scholar 

  66. G. Ovarlez, A. Vu Nguyen Le, W.J. Smit, A. Fall, R. Mari, G. Chatté, et al., Density waves in shear-thickening suspensions. Sci. Adv. 6(16), eaay 5589 (2020). https://doi.org/10.1126/sciadv.aay5589

    Article  CAS  Google Scholar 

  67. A. Gauthier, M. Pruvost, O. Gamache, A. Colin, A new pressure sensor array for normal stress measurement in complex fluids. J. Rheol. 65(4), 583–594 (2021). https://doi.org/10.1122/8.0000249

    Article  CAS  Google Scholar 

  68. B. Saint-Michel, T. Gibaud, S. Manneville, Uncovering instabilities in the spatiotemporal dynamics of a shear-thickening Cornstarch suspension. Phys. Rev. X 8(3), 031006 (2018). https://doi.org/10.1103/PhysRevX.8.031006

    Article  CAS  Google Scholar 

  69. J. Mewis, G. Biebaut, Shear thickening in steady and superposition flows effect of particle interaction forces. J. Rheol. 45(3), 799–813 (2001). https://doi.org/10.1122/1.1359761

    Article  CAS  Google Scholar 

  70. H. Ramli, N.F.A. Zainal, M. Hess, C.H. Chan, Basic principle and good practices of rheology for polymers for teachers and beginners. Chemistry Teacher International 4(4), 307–326 (2022). https://doi.org/10.1515/cti-2022-0010

    Article  Google Scholar 

  71. K. Hyun, S.H. Kim, K.H. Ahn, S.J. Lee, Large amplitude oscillatory shear as a way to classify the complex fluids. J. Nonnewton Fluid Mech 107, 51–65 (2002). https://doi.org/10.1016/S0377-0257(02)00141-6

    Article  CAS  Google Scholar 

  72. H.M. Laun, R. Bung, F. Schmidt, Rheology of extremely shear thickening polymer dispersions (passively viscosity switching fluids). J. Rheol. 35(6), 999–1034 (1991) https://www.scopus.com/inward/record.uri?eid=2-s2.0-76149128078&doi=10.1122%2f1.550257&partnerID=40&md5=0debbc1882216f1a2b2f19ea4ffbc7bc

    Article  CAS  Google Scholar 

  73. W.H. Boersma, J. Laven, H.N. Stein, Viscoelastic properties of concentrated shear-thickening dispersions. J. Colloid Interface Sci. 149(1), 10–22 (1992) https://www.sciencedirect.com/science/article/pii/002197979290385Y

    Article  CAS  Google Scholar 

  74. S.R. Raghavan, S.A. Khan, Shear-thickening response of Fumed silica suspensions under steady and oscillatory shear. J. Colloid Interface Sci. 185(1), 57–67 (1997) https://www.sciencedirect.com/science/article/pii/S0021979796945816

    Article  CAS  Google Scholar 

  75. F. Yziquel, P.J. Carreau, P.A. Tanguy, Non-linear viscoelastic behavior of fumed silica suspensions. Rheol. Acta 38(1), 14–25 (1999). https://doi.org/10.1007/s003970050152

    Article  CAS  Google Scholar 

  76. Y.S. Lee, N.J. Wagner, Dynamic properties of shear thickening colloidal suspensions. Rheol. Acta 42(3), 199–208 (2003). https://doi.org/10.1007/s00397-002-0290-7

    Article  CAS  Google Scholar 

  77. C. Fischer, C.J.G. Plummer, V. Michaud, P.-E. Bourban, J.-A.E. Månson, Pre- and post-transition behavior of shear-thickening fluids in oscillating shear. Rheol. Acta 46(8), 1099–1108 (2007). https://doi.org/10.1007/s00397-007-0202-y

    Article  CAS  Google Scholar 

  78. L. Chang, K. Friedrich, A.K. Schlarb, R. Tanner, L. Ye, Shear-thickening behaviour of concentrated polymer dispersions under steady and oscillatory shear. J. Mater. Sci. 46(2), 339–346 (2011). https://doi.org/10.1007/s10853-010-4817-5

    Article  CAS  Google Scholar 

  79. S. Khandavalli, J.P. Rothstein, Large amplitude oscillatory shear rheology of three different shear-thickening particle dispersions. Rheol. Acta 54(7), 601–618 (2015). https://doi.org/10.1007/s00397-015-0855-x

    Article  CAS  Google Scholar 

  80. J. Lee, Z. Jiang, J. Wang, A.R. Sandy, S. Narayanan, X.-M. Lin, Unraveling the role of order-to-disorder transition in shear thickening suspensions. Phys. Rev. Lett. 120(2), 028002 (2018). https://doi.org/10.1103/PhysRevLett.120.028002

    Article  CAS  Google Scholar 

  81. D. Doraiswamy, A.N. Mujumdar, I. Tsao, A.N. Beris, S.C. Danforth, A.B. Metzner, The Cox–Merz rule extended: A rheological model for concentrated suspensions and other materials with a yield stress. J. Rheol. 35(4), 647–685 (1991). https://doi.org/10.1122/1.550184

    Article  CAS  Google Scholar 

  82. Q. Zhao, Y. He, H. Yao, B. Wen, Dynamic performance and mechanical model analysis of a shear thickening fluid damper. Smart Mater. Struct. 27(7), 075021 (2018). https://doi.org/10.1088/1361-665X/aac23f

    Article  Google Scholar 

  83. X.Z. Zhang, W.H. Li, X.L. Gong, The rheology of shear thickening fluid (STF) and the dynamic performance of an STF-filled damper. Smart Mater. Struct. 17(3), 035027 (2008). https://doi.org/10.1088/0964-1726/17/3/035027

    Article  Google Scholar 

  84. K. Lin, A. Zhou, H. Liu, Y. Liu, C. Huang, Shear thickening fluid damper and its application to vibration mitigation of stay cable. Structure 26, 214–223 (2020) https://www.sciencedirect.com/science/article/pii/S2352012420301727

    Article  Google Scholar 

  85. Q. Zhao, J. Yuan, H. Jiang, H. Yao, B. Wen, Vibration control of a rotor system by shear thickening fluid dampers. J. Sound Vib. 494, 115883 (2021) https://www.sciencedirect.com/science/article/pii/S0022460X20307203

    Article  Google Scholar 

  86. F.J. Rubio-Hernández, Testing a shear-thickening fumed silica suspension with parallel superposition rheology. J. Mol. Liq. 365, 120179 (2022) https://www.sciencedirect.com/science/article/pii/S0167732222017184

    Article  Google Scholar 

  87. P. Moldenaers, J. Mewis, On the nature of viscoelasticity in polymeric liquid crystals. J. Rheol. 37(2), 367–380 (1993). https://doi.org/10.1122/1.550448

    Article  CAS  Google Scholar 

  88. BA de L Costello. Parallel superposition rheology of an associatively thickened latex. TA Instruments applications note RH-060

    Google Scholar 

  89. Tianhong Chen. Parallel Superposition Studies on Paint Using An ARES-G2 Rheometer. TA Instruments applications note RH093

    Google Scholar 

  90. K. Niedzwiedz, H. Buggisch, N. Willenbacher, Extensional rheology of concentrated emulsions as probed by capillary breakup elongational rheometry (CaBER). Rheol. Acta 49(11), 1103–1116 (2010). https://doi.org/10.1007/s00397-010-0477-2

    Article  CAS  Google Scholar 

  91. L. Martinie, H. Buggisch, N. Willenbacher, Apparent elongational yield stress of soft matter. J. Rheol. 57(2), 627–646 (2013). https://doi.org/10.1122/1.4789785

    Article  CAS  Google Scholar 

  92. F.J. Galindo-Rosales, J.P. Segovia-Gutiérrez, F.T. Pinho, M.A. Alves, J. de Vicente, Extensional rheometry of magnetic dispersions. J. Rheol. 59(1), 193–209 (2014). https://doi.org/10.1122/1.4902356

    Article  CAS  Google Scholar 

  93. S.H. Sadek, H.H. Najafabadi, F.J. Galindo-Rosales, Capillary breakup extensional magnetorheometry. J. Rheol. 64(1), 55–65 (2019). https://doi.org/10.1122/1.5115460

    Article  CAS  Google Scholar 

  94. S.H. Sadek, H.H. Najafabadi, F.J. Galindo-Rosales, Capillary breakup extensional electrorheometry (CaBEER). J. Rheol. 64(1), 43–54 (2019). https://doi.org/10.1122/1.5116718

    Article  CAS  Google Scholar 

  95. J.H. García-Ortiz, F.J. Galindo-Rosales, Extensional Magnetorheology as a tool for optimizing the formulation of ferrofluids in oil-spill clean-up processes. PRO 8(5) (2020)

    Google Scholar 

  96. J.M. Nunes, F.J. Galindo-Rosales, L. Campo-Deaño, Extensional Magnetorheology of viscoelastic human blood analogues loaded with magnetic particles. Materials 14(22), 6930 (2021)

    Article  CAS  Google Scholar 

  97. H.C.H. Ng, A. Corker, E. García-Tuñón, R.J. Poole, GO CaBER: Capillary breakup and steady-shear experiments on aqueous graphene oxide (GO) suspensions. J. Rheol. 64(1), 81–93 (2019). https://doi.org/10.1122/1.5109016

    Article  CAS  Google Scholar 

  98. E. White, M. Chellamuthu, J. Rothstein, Extensional rheology of a shear-thickening cornstarch and water suspension. Rheol. Acta 49, 119–129 (2009)

    Article  Google Scholar 

  99. M. Chellamuthu, E. Arndt, J. Rothstein, Extensional rheology of shear-thickening nanoparticle suspensions. Soft Matter 5, 2117–2124 (2009)

    Article  CAS  Google Scholar 

  100. M.I. Smith, R. Besseling, M.E. Cates, V. Bertola, Dilatancy in the flow and fracture of stretched colloidal suspensions. Nat. Commun. 1(1), 114 (2010). https://doi.org/10.1038/ncomms1119

    Article  CAS  Google Scholar 

  101. S. Khandavalli, J.P. Rothstein, Extensional rheology of shear-thickening fumed silica nanoparticles dispersed in an aqueous polyethylene oxide solution. J. Rheol. 58(2), 411–431 (2014). https://doi.org/10.1122/1.4864620

    Article  CAS  Google Scholar 

  102. M. Roché, H. Kellay, H.A. Stone, Heterogeneity and the role of normal stresses during the extensional thinning of non-Brownian shear-thickening fluids. Phys. Rev. Lett. 107(13), 134503 (2011). https://doi.org/10.1103/PhysRevLett.107.134503

    Article  CAS  Google Scholar 

  103. S.L. Anna, G.H. McKinley, Effect of a controlled pre-deformation history on extensional viscosity of dilute polymer solutions. Rheol. Acta 47(8), 841–859 (2008). https://doi.org/10.1007/s00397-007-0253-0

    Article  CAS  Google Scholar 

  104. J.R. Morillas, J. de Vicente, Magnetorheology: A review. Soft Matter 16(42), 9614–9642 (2020). https://doi.org/10.1039/D0SM01082K

    Article  CAS  Google Scholar 

  105. P. Sheng, W. Wen, Electrorheological fluids: Mechanisms, dynamics, and microfluidics applications. Annu. Rev. Fluid Mech. 44(1), 143–174 (2011). https://doi.org/10.1146/annurev-fluid-120710-101024

    Article  Google Scholar 

  106. M. Terkel, J. de Vicente, Magnetorheology of exotic magnetic mesostructures generated under triaxial unsteady magnetic fields. Smart Mater. Struct. 30(1), 014005 (2020). https://doi.org/10.1088/1361-665X/abcca3

    Article  Google Scholar 

  107. M. Terkel, J. Tajuelo, J. de Vicente, Enhancing magnetorheology with precession magnetic fields. J. Rheol. 66(1), 67–78 (2021). https://doi.org/10.1122/8.0000356

    Article  CAS  Google Scholar 

  108. Transport Phenomena Research Center. Smart Fluids: CEFT; Available from https://ceft.fe.up.pt/fluids/smart-fluids/

  109. X. Zhang, W. Li, X.L. Gong, Study on magnetorheological shear thickening fluid. Smart Mater. Struct. 17(1), 015051 (2008). https://doi.org/10.1088/0964-1726/17/1/015051

    Article  Google Scholar 

  110. C. Qian, Y. Tian, Z. Fan, Z. Sun, Z. Ma, Investigation on rheological characteristics of magnetorheological shear thickening fluids mixed with micro CBN abrasive particles. Smart Mater. Struct. 31(9), 095004 (2022). https://doi.org/10.1088/1361-665X/ac7bbd

    Article  Google Scholar 

  111. Y. Ming, X.M. Huang, D.D. Zhou, Q. Zeng, H.Y. Li, Rheological properties of magnetic field-assisted thickening fluid and high-efficiency spherical polishing of ZrO2 ceramics. Int. J. Adv. Manuf. Technol. 121(1), 1049–1061 (2022). https://doi.org/10.1007/s00170-022-09344-4

    Article  Google Scholar 

  112. J. Yang, S. Sun, W. Li, H. Du, G. Alici, M. Nakano, Development of a linear damper working with magnetorheological shear thickening fluids. J. Intell. Mater. Syst. Struct. 26(14), 1811–1817 (2015). https://doi.org/10.1177/1045389X15577653

    Article  CAS  Google Scholar 

  113. A. Rendos, S. Woodman, K. McDonald, T. Ranzani, K.A. Brown, Shear thickening prevents slip in magnetorheological fluids. Smart Mater. Struct. 29(7), 07LT2 (2020). https://doi.org/10.1088/1361-665X/ab8b2e

    Article  Google Scholar 

  114. G. Bossis, Y. Grasselli, A. Meunier, O. Volkova, Outstanding magnetorheological effect based on discontinuous shear thickening in the presence of a superplastifier molecule. Appl. Phys. Lett. 109(11), 111902 (2016). https://doi.org/10.1063/1.4962467

    Article  CAS  Google Scholar 

  115. F. Vereda, J.P. Segovia-Gutiérrez, J. de Vicente, R. Hidalgo-Alvarez, Faceted particles: An approach for the enhancement of the elasticity and the yield-stress of magnetorheological fluids. Appl. Phys. Lett. 108(21), 211904 (2016). https://doi.org/10.1063/1.4952394

    Article  CAS  Google Scholar 

  116. S.S. Shenoy, N.J. Wagner, J.W. Bender, E-FiRST: Electric field responsive shear thickening fluids. Rheol. Acta 42(4), 287–294 (2003). https://doi.org/10.1007/s00397-002-0289-0

    Article  CAS  Google Scholar 

  117. Y. Tian, M. Zhang, J. Jiang, N. Pesika, H. Zeng, J. Israelachvili, et al., Reversible shear thickening at low shear rates of electrorheological fluids under electric fields. Phys. Rev. E 83(1), 011401 (2011). https://doi.org/10.1103/PhysRevE.83.011401

    Article  CAS  Google Scholar 

  118. J. Jiang, Y. Liu, L. Shan, X. Zhang, Y. Meng, H.J. Choi, et al., Shear thinning and shear thickening characteristics in electrorheological fluids. Smart Mater. Struct. 23(1), 015003 (2013). https://doi.org/10.1088/0964-1726/23/1/015003

    Article  CAS  Google Scholar 

  119. S. Gürgen, M.A. Sofuoğlu, Vibration attenuation of sandwich structures filled with shear thickening fluids. Compos. Part B 186, 107831 (2020) https://www.sciencedirect.com/science/article/pii/S1359836819355131

    Article  Google Scholar 

  120. S. Gürgen, M.A. Sofuoğlu, Experimental investigation on vibration characteristics of shear thickening fluid filled CFRP tubes. Compos. Struct. 226, 111236 (2019) https://www.sciencedirect.com/science/article/pii/S0263822319316988

    Article  Google Scholar 

  121. L. Sun, M. Wei, J. Zhu, Low velocity impact performance of fiber-reinforced polymer impregnated with shear thickening fluid. Polym. Test. 96, 107095 (2021) https://www.sciencedirect.com/science/article/pii/S0142941821000453

    Article  CAS  Google Scholar 

  122. H. Taş, I.F. Soykok, Investigation of the low velocity impact behaviour of shear thickening fluid impregnated Kevlar, hybrid (Kevlar/carbon) and carbon fabrics. Fibers Polym. 22(9), 2626–2634 (2021). https://doi.org/10.1007/s12221-021-1358-2

    Article  CAS  Google Scholar 

  123. F. Pinto, M. Meo, Design and manufacturing of a novel shear thickening fluid composite (STFC) with enhanced out-of-plane properties and damage suppression. Appl. Compos. Mater. 24(3), 643–660 (2017). https://doi.org/10.1007/s10443-016-9532-1

    Article  CAS  Google Scholar 

  124. E. Selver, Impact and damage tolerance of shear thickening fluids-impregnated carbon and glass fabric composites. J. Reinf. Plast. Compos. 38(14), 669–688 (2019). https://doi.org/10.1177/0731684419842648

    Article  CAS  Google Scholar 

  125. F. Galindo-Rosales, S. Martínez-Aranda, L. Campo-Deaño, Cork STFμfluidics – A novel concept for the development of eco-friendly light-weight energy absorbing composites. Mater. Des. 82 (2015)

    Google Scholar 

  126. A. Haris, H.P. Lee, V.B.C. Tan, An experimental study on shock wave mitigation capability of polyurea and shear thickening fluid based suspension pads. Def. Technol. 14(1), 12–18 (2018) https://www.sciencedirect.com/science/article/pii/S2214914717301150

    Article  Google Scholar 

  127. M.A. Dawson, Composite plates with a layer of fluid-filled, reticulated foam for blast protection of infrastructure. Int. J. Impact Eng. 36(10), 1288–1295 (2009) https://www.sciencedirect.com/science/article/pii/S0734743X09000621

    Article  Google Scholar 

  128. M.A. Dawson, G.H. McKinley, L.J. Gibson, The dynamic compressive response of open-cell foam impregnated with a Newtonian fluid. J. Appl. Mech. 75(4), 041015 (2008). https://doi.org/10.1115/1.2912940

    Article  CAS  Google Scholar 

  129. S. Gürgen, M.C. Kuşhan, The ballistic performance of aramid based fabrics impregnated with multi-phase shear thickening fluids. Polym. Test. 64, 296–306 (2017) https://www.sciencedirect.com/science/article/pii/S0142941817313478

    Article  Google Scholar 

  130. A.F. Ávila, A.M. de Oliveira, S.G. Leão, M.G. Martins, Aramid fabric/nano-size dual phase shear thickening fluid composites response to ballistic impact. Compos. A: Appl. Sci. Manuf. 112, 468–474 (2018) https://www.sciencedirect.com/science/article/pii/S1359835X18302689

    Article  Google Scholar 

  131. M. Hasanzadeh, V. Mottaghitalab, The role of shear-thickening fluids (STFs) in ballistic and stab-resistance improvement of flexible Armor. J. Mater. Eng. Perform. 23(4), 1182–1196 (2014). https://doi.org/10.1007/s11665-014-0870-6

    Article  CAS  Google Scholar 

  132. K. Yu, H. Cao, K. Qian, L. Jiang, Li HJF (Europe TiE, Synthesis and Stab Resistance of Shear Thickening Fluid (STF) Impregnated Glass Fabric Composites, 2012)

    Google Scholar 

  133. M.J. Decker, C.J. Halbach, C.H. Nam, N.J. Wagner, E.D. Wetzel, Stab resistance of shear thickening fluid (STF)-treated fabrics. Compos. Sci. Technol. 67(3), 565–578 (2007) https://www.sciencedirect.com/science/article/pii/S0266353806002983

    Article  CAS  Google Scholar 

  134. S. Gürgen, T. Yıldız, Stab resistance of smart polymer coated textiles reinforced with particle additives. Compos. Struct. 235, 111812 (2020) https://www.sciencedirect.com/science/article/pii/S0263822319337614

    Article  Google Scholar 

  135. S. Gürgen, M.C. Kuşhan, The stab resistance of fabrics impregnated with shear thickening fluids including various particle size of additives. Compos. A: Appl. Sci. Manuf. 94, 50–60 (2017) https://www.sciencedirect.com/science/article/pii/S1359835X1630447X

    Article  Google Scholar 

  136. J.M. Dealy, A.J. Giacomin, Sliding plate and sliding cylinder rheometers, in Rheological Measurement, ed. by A.A. Collyer, D.W. Clegg, (Springer Netherlands, Dordrecht, 1998), pp. 237–259

    Chapter  Google Scholar 

  137. A.J. Giacomin, T. Samurkas, J.M. Dealy, A novel sliding plate rheometer for molten plastics. Polym. Eng. Sci. 29(8), 499–504 (1989). https://doi.org/10.1002/pen.760290803

    Article  CAS  Google Scholar 

  138. K.C. Ortman, N. Agarwal, A.P.R. Eberle, D.G. Baird, P. Wapperom, G.A. Jeffrey, Transient shear flow behavior of concentrated long glass fiber suspensions in a sliding plate rheometer. J. Non-Newtonian Fluid Mech. 166(16), 884–895 (2011) https://www.sciencedirect.com/science/article/pii/S0377025711000930

    Article  CAS  Google Scholar 

  139. J. Xu, S. Costeux, J.M. Dealy, M.N. De Decker, Use of a sliding plate rheometer to measure the first normal stress difference at high shear rates. Rheol. Acta 46(6), 815–824 (2007). https://doi.org/10.1007/s00397-006-0156-5

    Article  CAS  Google Scholar 

  140. C. Clasen, G.H. McKinley, Gap-dependent microrheometry of complex liquids. J. Non-Newtonian Fluid Mech. 124(1), 1–10 (2004) https://www.sciencedirect.com/science/article/pii/S0377025704002381

    Article  CAS  Google Scholar 

  141. D. Moon, A.J. Bur, K.B. Migler, Multi-sample micro-slit rheometry. J. Rheol. 52(5), 1131–1142 (2008). https://doi.org/10.1122/1.2955511

    Article  CAS  Google Scholar 

  142. T. Athanasiou, G.K. Auernhammer, D. Vlassopoulos, G. Petekidis, A high-frequency piezoelectric rheometer with validation of the loss angle measuring loop: Application to polymer melts and colloidal glasses. Rheol. Acta 58(9), 619–637 (2019). https://doi.org/10.1007/s00397-019-01163-x

    Article  CAS  Google Scholar 

  143. B. Schroyen, D. Vlassopoulos, P. Van Puyvelde, J. Vermant, Bulk rheometry at high frequencies: A review of experimental approaches. Rheol. Acta 59(1), 1–22 (2020). https://doi.org/10.1007/s00397-019-01172-w

    Article  CAS  Google Scholar 

  144. C.A.M. Verbaan, G.W.M. Peters, M. Steinbuch, Linear viscoelastic fluid characterization of ultra-high-viscosity fluids for high-frequency damper design. Rheol. Acta 54(8), 667–677 (2015). https://doi.org/10.1007/s00397-015-0862-y

    Article  CAS  Google Scholar 

  145. R.A. Secco, M. Kostic, J.R. de Bruyn, Fluid viscosity measurement, in Measurement IaSH, ed. by J.G. Webster, H. Eren, (Imprint CRC Press, 2014) p. 46-1: 31

    Google Scholar 

  146. J.J. Bikerman, A penetroviscometer for very viscous liquids. J. Colloid Sci. 3(2), 75–85 (1948) https://www.sciencedirect.com/science/article/pii/0095852248900592

    Article  CAS  Google Scholar 

  147. F. Koran, J.M. Dealy, A high pressure sliding plate rheometer for polymer melts. J. Rheol. 43(5), 1279–1290 (1999). https://doi.org/10.1122/1.551046

    Article  CAS  Google Scholar 

  148. A. Perrot, D. Rangeard, Y. Mélinge, Prediction of the Ram extrusion force of cement-based materials. Appl. Rheol. 24(5), 34–40 (2014). https://doi.org/10.3933/applrheol-24-53320

    Article  Google Scholar 

  149. K.D. Dolan, J.F. Steffe, R.G. Morgan, Back extrusion and simulation of viscosity development during starch gelatinization. J. Food Process Eng. 11(2), 79–101 (1989). https://doi.org/10.1111/j.1745-4530.1989.tb00023.x

    Article  Google Scholar 

  150. G.H. Brusewitz, H. Yu, Back extrusion method for determining properties of mustard slurry. J. Food Eng. 27(3), 259–265 (1996) https://www.sciencedirect.com/science/article/pii/0260877495000089

    Article  Google Scholar 

  151. K. Autio, T. Kuuva, K. Roininen, L. Lähteenmäki, Rheological properties, microstructure and sensory perception of high-amylose starch-pectin mixed gels. J. Texture Stud. 33(6), 473–486 (2002). https://doi.org/10.1111/j.1745-4603.2002.tb01362.x

    Article  Google Scholar 

  152. F. Nasaruddin, N.L. Chin, Y.A. Yusof, Effect of processing on instrumental textural properties of traditional Dodol using back extrusion. Int. J. Food Prop. 15(3), 495–506 (2012). https://doi.org/10.1080/10942912.2010.491932

    Article  Google Scholar 

  153. T.L. Smith, J.D. Ferry, F.W. Schremp, Measurements of the mechanical properties of polymer solutions by electromagnetic transducers. J. Appl. Phys. 20(2), 144–153 (1949). https://doi.org/10.1063/1.1698326

    Article  CAS  Google Scholar 

  154. T. Hoshino, Analysis of viscosity measurements obtained using the short back extrusion method. Part 1: Theory of short back extrusion in viscometry. J. Texture Stud. 51(2), 201–213 (2020). https://doi.org/10.1111/jtxs.12501

    Article  Google Scholar 

  155. T. Hoshino, Analysis of viscosity measurements obtained using the short back extrusion method. Part 2: Verification of short back extrusion in viscometry. J. Texture Stud. 51(2), 214–224 (2020). https://doi.org/10.1111/jtxs.12510

    Article  Google Scholar 

  156. T. Hoshino, Analysis of the flow properties of a Herschel–Bulkley fluid using short back extrusion viscometry and considering time-dependent and stress growth behaviors. Rheol. Acta 59(11), 809–819 (2020). https://doi.org/10.1007/s00397-020-01243-3

    Article  CAS  Google Scholar 

  157. A.S. Lim, S.L. Lopatnikov, N.J. Wagner, J.W. Gillespie, Investigating the transient response of a shear thickening fluid using the split Hopkinson pressure bar technique. Rheol. Acta 49(8), 879–890 (2010). https://doi.org/10.1007/s00397-010-0463-8

    Article  CAS  Google Scholar 

  158. N. Asija, H. Chouhan, S.A. Gebremeskel, N. Bhatnagar, High strain rate characterization of shear thickening fluids using Split Hopkinson pressure bar technique. Int. J. Impact Eng. 110, 365–370 (2017) https://www.sciencedirect.com/science/article/pii/S0734743X16306534

    Article  Google Scholar 

  159. Z. Tan, J. Ge, H. Zhang, P. Zhai, W. Li, Dynamic response of shear thickening fluid reinforced with SiC nanowires under high strain rates. Appl. Phys. Lett. 111(3), 031902 (2017). https://doi.org/10.1063/1.4994066

    Article  CAS  Google Scholar 

  160. Y. Guo, Y. Wei, J. Zou, C. Huang, X. Wu, Z. Liu, et al., Impact and usage of the shear thickening fluid (STF) material in damping vibration of bolted flange joints. Smart Mater. Struct. 28(9), 095005 (2019). https://doi.org/10.1088/1361-665X/aaef6c

    Article  CAS  Google Scholar 

  161. A. Azimi, G.M. Owolabi, H. Fallahdoost, N. Kumar, G. Warner, High strain rate behavior of ultrafine grained AA2519 processed via multi axial cryogenic forging. Metals 9(2), 115 (2019)

    Article  CAS  Google Scholar 

  162. A.S. Lim, S.L. Lopatnikov, J.W. Gillespie, Development of the split-Hopkinson pressure bar technique for viscous fluid characterization. Polym. Test. 28(8), 891–900 (2009) https://www.sciencedirect.com/science/article/pii/S0142941809001342

    Article  CAS  Google Scholar 

  163. L.S. Madsen, M. Waleed, C.A. Casacio, A. Terrasson, A.B. Stilgoe, M.A. Taylor, et al., Ultrafast viscosity measurement with ballistic optical tweezers. Nat. Photonics 15(5), 386–392 (2021). https://doi.org/10.1038/s41566-021-00798-8

    Article  CAS  Google Scholar 

  164. M. Zarei, J. Aalaie, Application of shear thickening fluids in material development. J. Mater. Res. Technol. 9(5), 10411–10433 (2020) https://www.sciencedirect.com/science/article/pii/S2238785420315489

    Article  Google Scholar 

Download references

Acknowledgments

Authors would like to acknowledge the financial support from FEDER funds through COMPETE2020-Programa Operacional Competitividade e Internacionalização (POCI) and FCT/MCTES LA/P/0045/2020 (ALiCE), UIDB/00532/2020, UIDP/00532/2020 (CEFT), and UI/BD/150887/2021, funded by national funds through FCT/MCTES (PIDDAC) and NORTE-01-0145-FEDER-000054.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Galindo-Rosales .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Montenegro, M., Campo-Deaño, L., Galindo-Rosales, F.J. (2023). Rheology of Shear Thickening Fluid. In: Gürgen, S. (eds) Shear Thickening Fluid. Springer, Cham. https://doi.org/10.1007/978-3-031-25717-9_2

Download citation

Publish with us

Policies and ethics