Dietary Self-management in Heart Failure: High Tech or High Touch?

Opinion statement

Dietary management of heart failure (HF) has largely been focused on sodium and fluid restrictions. Although safety and efficacy of these interventions in HF remain unclear, a daily sodium intake between 2000 and 3000 mg/day appears to be safe in these patients. Ongoing clinical research will inform on the safety and efficacy of a more restrictive sodium intake to less than 1500 mg/day. Data shows that routine fluid restriction in HF regardless of symptoms may be unnecessary; however, in patients with signs of congestion, fluid restriction to 2.0 L/day may be advisable. Recently, more attention has been paid to other nutritional aspects of HF beyond sodium and fluid intake, although there is still little evidence available to guide nutritional management of HF. Assuring that patients meet daily requirements for key micronutrients, such as calcium, magnesium, potassium, folate, vitamin E, vitamin D, zinc, and thiamine, is essential in order to prevent deficiencies. More appropriate macronutrient composition of the diet is still to be determined; however, a diet containing 50–55% carbohydrates, 25–30% fat, and 15–20% protein seems acceptable for patients with HF with or without non-end-stage renal disease. Additionally, increased protein intake may be considered in malnourished/cachectic patients. Consulting a registered dietitian is especially helpful for patients with recent HF exacerbations or for patients with multiple comorbidities who may need to follow several dietary restrictions and may benefit of individualized dietary counseling in order to ensure appropriate intake of energy, protein, and micronutrients. Today, there are still several knowledge gaps in guiding the dietary management of HF. In this article, we review current recommendations for the dietary management of HF and the evidence supporting this practice.

This is a preview of subscription content, access via your institution.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.

    Yancy CW, Jessup M, Bozkurt B, Butler J, Casey Jr DE, Drazner MH, et al. ACCF/AHA guideline for the management of heart failure: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation. 2013;128:1810–52. doi:10.1161/CIR.0b013e31829e8776.

    Article  PubMed  Google Scholar 

  2. 2.

    Kemp CD, Conte JV. The pathophysiology of heart failure. Cardiovasc Pathol. 2012;21:365–71. doi:10.1016/j.carpath.2011.11.007.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2016;18:891–975. doi:10.1002/ejhf.592.

    Article  PubMed  Google Scholar 

  4. 4.

    Gupta D, Georgiopoulou V, Kalogeropoulos A, Dunbar S, Reilly C, Sands J, et al. Dietary sodium intake in heart failure. Circulation. 2012;126:479–85. doi:10.1161/CIRCULATIONAHA.111.062430.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Butler T. Dietary management of heart failure: room for improvement? Br J Nutr. 2016;115:1202–17. doi:10.1017/S000711451500553X.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Arcand J, Ivanov J, Sasson A, Floras V, Al-Hesayen A, Azevedo ER, et al. A high-sodium diet is associated with acute decompensated heart failure in ambulatory heart failure patients: a prospective follow-up study. Am J Clin Nutr. 2011;93:332–7. doi:10.3945/ajcn.110.000174.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Lennie TA, Song EK, Wu JR, Chung KL, Dumbar SB, Pressler SJ, et al. Three gram sodium intake is associated with longer event-free survival only in patients with advanced heart failure. J Card Fail. 2011;17:325–30. doi:10.1016/j.cardfail.2010.11.008.

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Son YJ, Lee Y, Song EK. Adherence to a sodium-restricted diet is associated with lower symptom burden and longer cardiac event-free survival in patients with heart failure. J Clin Nurs. 2011;20:3029–38. doi:10.1111/j.1365-2702.2011.03755.x.

    Article  PubMed  Google Scholar 

  9. 9.

    Song EK, Moser DK, Dunbar SB, Pressler SJ, Lennie TA. Dietary sodium restriction below 2 g per day predicted shorter event-free survival in patients with mild heart failure. Eur J Cardiovasc Nurs. 2014;13:541–8. doi:10.1177/1474515113517574.

    Article  PubMed  Google Scholar 

  10. 10.

    Doukky R, Avery E, Mangla A, Collado FM, Ibrahim Z, Poulin MF, et al. Impact of dietary sodium restriction on heart failure outcomes. JACC Heart Fail. 2016;4:24–35. doi:10.1016/j.jchf.2015.08.007.

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Alvelos M, Ferreira A, Bettencourt P, Serrão P, Pestana M, Cerqueira-Gomes M, et al. The effect of dietary sodium restriction on neurohumoral activity and renal dopaminergic response in patients with heart failure. Eur J Heart Fail. 2004;6:593–9. doi:10.1016/j.ejheart.2003.11.020.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Colin E, Castillo L, Orea A, Rebollar V, Narváez R, Asensio E. Effects of a nutritional intervention on body composition, clinical status and quality of life in patients with heart failure. Nutrition. 2004;20:890–5. doi:10.1016/j.nut.2004.06.010.

    Article  Google Scholar 

  13. 13.

    Colin E, Castillo L, Orea A, Montaño P, Dorantes G. Impact of a sodium and fluid restricted diet on clinical status in heart failure patients. Rev Chil Nutr. 2010;37:427–37. http://dx.doi.org/10.4067/S0717-75182010000400003.

    Article  Google Scholar 

  14. 14.

    Damgaard M, Norsk P, Gustafsson F, Kanters JK, Christensen NJ, Bie P, et al. Hemodynamic and neuroendocrine responses to changes in sodium intake in compensated heart failure. Am J Physiol Regul Integr Comp Physiol. 2006;290:R1294–301. doi:10.1152/ajpregu.00738.2005.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Nakasato M, Strunk CM, Guimarães G, Rezende MV, Bocchi EA. Is the low-sodium diet actually indicated for all patients with stable heart failure? Arq Bras Cardiol. 2010;94:86–94. http://dx.doi.org/10.1590/S0066-782X2010000100015.

    CAS  Article  Google Scholar 

  16. 16.

    Parrinello G, Di Pasquale P, Licata G, Torres D, Giammanco M, Fasullo S, et al. Long-term effects of dietary sodium intake on cytokines and neurohormonal activation in patients with recently compensated congestive heart failure. J Card Fail. 2009;15:864–73. doi:10.1016/j.cardfail.2009.06.002.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Paterna S, Gaspare P, Fasullo S, Sarullo FM, Di Pasquale P. Normal-sodium diet compared with low-sodium diet in compensated congestive heart failure: is sodium an old enemy or a new friend? Clin Sci. 2008;114:221–30. doi:10.1042/CS20070193.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Paterna S, Parrinello G, Cannizzaro S, Fasullo S, Torres D, Sarullo FM, et al. Medium term effects of different dosage of diuretic, sodium, and fluid administration on neurohormonal and clinical outcome in patients with recently compensated heart failure. Am J Cardiol. 2009;103:93–102. doi:10.1016/j.amjcard.2008.08.043.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Philipson H, Ekman I, Swedberg K, Schaufelberger M. A pilot study of salt and water restriction in patients with chronic heart failure. Scand Cardiovasc J. 2010;44:209–14. doi:10.3109/14017431003698523.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Philipson H, Ekman I, Forslund HB, Swedberg K, Schaufelberger M. Salt and fluid restriction is effective in patients with chronic heart failure. Eur J Heart Fail. 2013;15:1304–10. doi:10.1093/eurjhf/hft097.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Hummel SL, Seymour EM, Brook RD, Sheth SS, Ghosh E, Zhu S, et al. Low-sodium DASH diet improves diastolic function and ventricular-arterial coupling in hypertensive heart failure with preserved ejection fraction. Circ Heart Fail. 2013;6:1165–71. doi:10.1161/CIRCHEARTFAILURE.113.000481.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    • Colin-Ramirez E, McAlister FA, Zheng Y, Sharma S, Armstrong PW, Ezekowitz JA. The long-term effects of dietary sodium restriction on clinical outcomes in patients with heart failure. The SODIUM-HF (Study of Dietary Intervention Under 100 MMOL in Heart Failure): a pilot study. Am Heart J. 2015;169:274–81. doi:10.1016/j.ahj.2014.11.013. Results of this pilot study suggest that achievement of a sodium intake less than 1500 mg/day is associated with lower BNP levels and improved quality of life in patients with heart failure.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Colin-Ramirez E, Ezekowitz JA. Salt in the diet in patients with heart failure: what to recommend. Curr Opin Cardiol. 2016;31:196–203. doi:10.1097/HCO.0000000000000253.

    Article  PubMed  Google Scholar 

  24. 24.

    Albert NM, Nutter B, Forney J, Slifcak E, Tang WH. A randomized controlled pilot study of outcomes of strict allowance of fluid therapy in hyponatremic heart failure (SALT-HF). J Card Fail. 2013;19:1–9. doi:10.1016/j.cardfail.2012.11.007.

    Article  PubMed  Google Scholar 

  25. 25.

    Aliti GB, Rabelo ER, Clausell N, Rohde LE, Biolo A, Beck-da-Silva L. Aggressive fluid and sodium restriction in acute decompensated heart failure: a randomized clinical trial. JAMA Intern Med. 2013;173:1058–64. doi:10.1001/jamainternmed.2013.552.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Holst M, Stromberg A, Lindholm M, Willenheimer R. Liberal versus restricted fluid prescription in stabilised patients with chronic heart failure: result of a randomised cross-over study of the effects on health-related quality of life, physical capacity, thirst and morbidity. Scand Cardiovasc J. 2008;42:316–22. doi:10.1080/14017430802071200.

    Article  PubMed  Google Scholar 

  27. 27.

    Travers B, O’Loughlin C, Murphy NF, Ryder M, Conlon C, Ledwidge M, et al. Fluid restriction in the management of decompensated heart failure: no impact on time to clinical stability. J Card Fail. 2007;13:128–32. doi:10.1016/j.cardfail.2006.10.012.

    Article  PubMed  Google Scholar 

  28. 28.

    Johansson P, van der Wal MH, Stromberg A, Waldreus N, Jaarsma T. Fluid restriction in patients with heart failure: how should we think? Eur J Cardiovasc Nurs. 2016;15:301–4. doi:10.1177/1474515116650346.

    Article  PubMed  Google Scholar 

  29. 29.

    De VR, Baldi C, Cioppa C, Giasi A, Fusco A. Effects of limiting fluid intake on clinical and laboratory outcomes in patients with heart failure. Results of a meta-analysis of randomized controlled trials. Herz. 2016;41:63–75. doi:10.1007/s00059-015-4345-9.

    Article  Google Scholar 

  30. 30.

    Li Y, Fu B, Qian X. Liberal versus restricted fluid administration in heart failure patients. A systematic review and meta-analysis of randomized trials. Int Heart J. 2015;56:192–5. doi:10.1536/ihj.14-288.

    Article  PubMed  Google Scholar 

  31. 31.

    Rossignol P, Masson S, Barlera S, Girerd N, Castelnovo A, Zannad F, et al. Loss in body weight is an independent prognostic factor for mortality in chronic heart failure: insights from the GISSI-HF and Val-HeFT trials. Eur J Heart Fail. 2015;17:424–33. doi:10.1002/ejhf.240.

    Article  PubMed  Google Scholar 

  32. 32.

    Rahman A, Jafry S, Jeejeebhoy K, Nagpal AD, Pisani B, Agarwala R. Malnutrition and cachexia in heart failure. JPEN J Parenter Enteral Nutr. 2016;40:475–86. doi:10.1177/0148607114566854.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Butler J, Papadimitriou L, Georgiopoulou V, Skopicki H, Dunbar S, Kalogeropoulos A. Comparing sodium intake strategies in heart failure: rationale and design of the Prevent Adverse Outcomes in Heart Failure by Limiting Sodium (PROHIBIT) Study. Circ Heart Fail. 2015;8:636–45. doi:10.1161/CIRCHEARTFAILURE.114.001700.

    Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Wessler JD, Maurer MS, Hummel SL. Evaluating the safety and efficacy of sodium-restricted/Dietary Approaches to Stop Hypertension diet after acute decompensated heart failure hospitalization: design and rationale for the Geriatric OUt of hospital Randomized MEal Trial in Heart Failure (GOURMET-HF). Am Heart J. 2015;169:342–8. doi:10.1016/j.ahj.2014.11.021.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Aquilani R, Opasich C, Verri M, Boschi F, Febo O, Pasini E, et al. Is nutritional intake adequate in chronic heart failure patients? J Am Coll Cardiol. 2003;42(7):1218–23. http://dx.doi.org/10.1016/S0735-1097(03)00946-X.

    Article  PubMed  Google Scholar 

  36. 36.

    Olvera G, Castillo L, Orea A, González D, Sánchez NA, Hernández MA, et al. PP125-SUN: effect of a low carbohydrate diet on the clinical status of patients with heart failure and right ventricular dysfunction. Clin Nutr. 2014;33:S66. doi:10.1016/S0261-5614(14)50167-7. Conference Abstract.

    Article  Google Scholar 

  37. 37.

    Evangelista LS, Heber D, Li Z, Bowerman S, Hamilton MA, Fonarow GC. Reduced body weight and adiposity with a high-protein diet improves functional status, lipid profiles, glycemic control, and quality of life in patients with heart failure: a feasibility study. J Cardiovasc Nurs. 2009;24:207–15. doi:10.1097/JCN.0b013e31819846b9.

    Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Motie M, Evangelista LS, Horwich T, Hamilton M, Lombardo D, Cooper DM, et al. Pro-HEART—a randomized clinical trial to test the effectiveness of a high protein diet targeting obese individuals with heart failure: rationale, design and baseline characteristics. Control Clin Trials. 2013;36:371–81. doi:10.1016/j.cct.2013.08.004.

    Article  Google Scholar 

  39. 39.

    Tavazzi L, Maggioni AP, Marchioli R, Barlera S, Franzosi MG, Latini R, et al. Effect of n-3 polyunsaturated fatty acids in patients with chronic heart failure (the GISSI-HF trial): a randomised, double-blind, placebo-controlled trial. Lancet. 2008;372:1223–30. doi:10.1016/S0140-6736(08)61239-8.

    Article  PubMed  Google Scholar 

  40. 40.

    Masson S, Marchioli R, Mozaffarian D, Bernasconi R, Milani V, Dragani L, et al. Plasma n-3 polyunsaturated fatty acids in chronic heart failure in the GISSI-Heart Failure Trial: relation with fish intake, circulating biomarkers, and mortality. Am Heart J. 2013;165(2):208–15. doi:10.1016/j.ahj.2012.10.021.

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Kimmig LM, Karalis DG. Do omega-3 polyunsaturated fatty acids prevent cardiovascular disease? A review of the randomized clinical trials. Lipid Insights. 2013;6:13–20. doi:10.4137/LPI.S10846.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Rizos EC, Ntzani EE, Bika E, Kostapanos MS, Elisaf MS. Association between omega-3 fatty acid supplementation and risk of major cardiovascular disease events: a systematic review and meta-analysis. JAMA. 2012;308:1024–33. doi:10.1001/2012.jama.11374.

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Shetty PM, Hauptman PJ, Landfried LK, Patel K, Weiss EP. Micronutrient deficiencies in patients with heart failure: relationships with body mass index and Age. J Card Fail. 2015;21:968–72. doi:10.1016/j.cardfail.2015.10.001.

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Weber KT. Furosemide in the long-term management of heart failure: the good, the bad, and the uncertain. J Am Coll Cardiol. 2004;44:1308–10. doi:10.1016/j.jacc.2004.06.046.

    CAS  PubMed  Google Scholar 

  45. 45.

    Trippel TD, Anker SD, von HS. The role of micronutrients and macronutrients in patients hospitalized for heart failure. Heart Fail Clin 2013;9:345–57 10.1016/j.hfc.2013.05.001.

  46. 46.

    Arcand J, Floras V, Ahmed M, Al-Hesayen A, Ivanov J, Allard JP, et al. Nutritional inadequacies in patients with stable heart failure. J Am Diet Assoc. 2009;109:1909–13. doi:10.1016/j.jada.2009.08.011.

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Song EK, Kang SM. Micronutrient deficiency independently predicts adverse health outcomes in patients with heart failure. Eur J Cardiovasc Nurs. 2015. doi:10.1097/JCN.0000000000000304.

    Google Scholar 

  48. 48.

    Frediani JK, Reilly CM, Higgins M, Clark PC, Gary RA, Dunbar SB. Quality and adequacy of dietary intake in a southern urban heart failure population. J Cardiovasc Nurs. 2013;28:119–28. doi:10.1097/JCN.0b013e318242279e.

    Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Lennie TA, Moser DK, Heo S, Chung ML, Zambroski CH. Factors influencing food intake in patients with heart failure. A comparison with healthy elders. J Cardiovasc Nurs. 2006;21:123–9.

    Article  PubMed  Google Scholar 

  50. 50.

    • Jefferson K, Ahmed M, Choleva M, Mak S, Allard JP, Newton GE, et al. Effect of a sodium-restricted diet on intake of other nutrients in heart failure: implications for research and clinical practice. J Card Fail. 2015;21:959–62. doi:10.1016/j.cardfail.2015.10.002. This study shows the risk of dietary inadequacies associated with a sodium restricted diet in patients with heart failure.

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    • Colin-Ramirez E, McAlister FA, Zheng Y, Sharma S, Ezekowitz JA. Changes in dietary intake and nutritional status associated with a significant reduction in sodium intake in patients with heart failure. A sub-analysis of the SODIUM-HF pilot study. Clin Nutr ESPEN. 2016;11:e26–32. doi:10.1016/j.clnesp.2015.11.002. Results suggest that dietary sodium reduction in heart failure may be achieved without causing a significant negative impact on overall dietary intake when the whole diet is considered during dietary counselling.

    Article  Google Scholar 

  52. 52.

    Institute of Medicine, Food and Nutrition Board. Dietary reference intakes: the essential guide to nutrient requirements. Washington, DC: National Academies Press; 2006.

    Google Scholar 

  53. 53.

    Institute of Medicine, Food and Nutrition Board. Dietary reference intakes for calcium and vitamin D. Washington, DC: The National Academies Press; 2011.

    Google Scholar 

  54. 54.

    Robbins J, Djoussé L. Diet and risk of heart failure: an update. Curr Cardiovasc Risk Rep. 2015;9:22. doi:10.1007/s12170-015-0451-8.

    Article  Google Scholar 

  55. 55.

    Ravera A, Carubelli V, Sciatti E, Bonadei I, Gorga E, Cani D, et al. Nutrition and cardiovascular disease: finding the perfect recipe for cardiovascular health. Nutrients. 2016. doi:10.3390/nu8060363.

    Google Scholar 

  56. 56.

    Rifai L, Silver MA. A review of the DASH diet as an optimal dietary plan for symptomatic heart failure. Prog Cardiovasc Dis. 2016;58:548–54. doi:10.1016/j.pcad.2015.11.001.

    Article  PubMed  Google Scholar 

  57. 57.

    Salehi-Abargouei A, Maghsoudi Z, Shirani F, Azadbakht L. Effects of Dietary Approaches to Stop Hypertension (DASH)-style diet on fatal or nonfatal cardiovascular diseases—incidence: a systematic review and meta-analysis on observational prospective studies. Nutrition. 2013;29:611–8. doi:10.1016/j.nut.2012.12.018.

    Article  PubMed  Google Scholar 

  58. 58.

    Levitan EB, Lewis CE, Tinker LF, Eaton CB, Ahmed A, Manson JE, et al. Mediterranean and DASH diet scores and mortality in women with heart failure: the women’s health initiative. Circ Heart Fail. 2013;6:1116–23. doi:10.1161/CIRCHEARTFAILURE.113.000495.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Rifai L, Pisano C, Hayden J, Sulo S, Silver MA. Impact of the DASH diet on endothelial function, exercise capacity, and quality of life in patients with heart failure. Proc (Bayl Univ Med Cent). 2015;28:151–6.

    Google Scholar 

  60. 60.

    U.S. Department of Health and Human Services, National Institutes of Health, National Heart LaBI. DASH eating plan. Your guide to lowering your blood pressure with DASH. 2006. NIH Publication No. 06–4082.

  61. 61.

    Estruch R, Ros E, Salas-Salvado J, Covas MI, Corella D, Aros F, et al. Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med. 2013;368:1279–90. doi:10.1056/NEJMoa1200303.

    CAS  Article  PubMed  Google Scholar 

  62. 62.

    Fito M, Estruch R, Salas-Salvado J, Martinez-Gonzalez MA, Aros F, Vila J, et al. Effect of the Mediterranean diet on heart failure biomarkers: a randomized sample from the PREDIMED trial. Eur J Heart Fail. 2014;16:543–50. doi:10.1002/ejhf.61.

    CAS  Article  PubMed  Google Scholar 

  63. 63.

    Bertoia ML, Triche EW, Michaud DS, Baylin A, Hogan JW, Neuhouser ML, et al. Mediterranean and dietary approaches to stop hypertension dietary patterns and risk of sudden cardiac death in postmenopausal women. Am J Clin Nutr. 2014;99:344–51. doi:10.3945/ajcn.112.056135.

    CAS  Article  PubMed  Google Scholar 

  64. 64.

    Tektonidis TG, Akesson A, Gigante B, Wolk A, Larsson SC. A Mediterranean diet and risk of myocardial infarction, heart failure and stroke: a population-based cohort study. Atherosclerosis. 2015;243:93–8. doi:10.1016/j.atherosclerosis.2015.08.039.

    CAS  Article  PubMed  Google Scholar 

  65. 65.

    • Tektonidis TG, Akesson A, Gigante B, Wolk A, Larsson SC. Adherence to a Mediterranean diet is associated with reduced risk of heart failure in men. Eur J Heart Fail. 2016;18:253–9. doi:10.1002/ejhf.481. Large longitudinal study showing that a high adherence to a Mediterranean, as evaluated by a score created from a self-administered food frequency questionnaire, was associated with a lower risk of heart failure and mortality from heart failure in men.

    Article  PubMed  Google Scholar 

  66. 66.

    Griva M. Cardiac cachexia – Up-to-date 2015. Cor et Vasa 2016;58:e431-e438 10.1016/j.crvasa.2015.08.003

  67. 67.

    Loncar G, Springer J, Anker M, Doehner W, Lainscak M. Cardiac cachexia: hic et nunc: “hic et nunc”—here and now. Int J Cardiol. 2015;201:e1–12. doi:10.1016/j.ijcard.2015.10.115.

    Article  PubMed  Google Scholar 

  68. 68.

    Bauer J, Biolo G, Cederholm T, Cesari M, Cruz-Jentoft AJ, Morley JE, et al. Evidence-based recommendations for optimal dietary protein intake in older people: a position paper from the PROT-AGE Study Group. J Am Med Dir Assoc. 2013;14:542–59. doi:10.1016/j.jamda.2013.05.021.

    Article  PubMed  Google Scholar 

  69. 69.

    Rozentryt P, von Stephan H, Lainscak M, Nowak JU, Kalantar-Zadeh K, Polonski L, et al. The effects of a high-caloric protein-rich oral nutritional supplement in patients with chronic heart failure and cachexia on quality of life, body composition, and inflammation markers: a randomized, double-blind pilot study. J Cachex Sarcopenia Muscle. 2010;1:35–42. doi:10.1007/s13539-010-0008-0.

    Article  Google Scholar 

  70. 70.

    • Lavie CJ, De SA, Parto P, Jahangir E, Kokkinos P, Ortega FB, et al. Obesity and prevalence of cardiovascular diseases and prognosis—the obesity paradox updated. Prog Cardiovasc Dis. 2016;58:537–47. doi:10.1016/j.pcad.2016.01.008. Comprehensive review of the relationship between adiposity and prognosis in cardiovascular disease, including heart failure. The implication of physical activity and cardiorespiratory fitness on this association are discussed.

    Article  PubMed  Google Scholar 

  71. 71.

    Sharma A, Lavie CJ, Borer JS, Vallakati A, Goel S, Lopez-Jimenez F, et al. Meta-analysis of the relation of body mass index to all-cause and cardiovascular mortality and hospitalization in patients with chronic heart failure. Am J Cardiol. 2015;115:1428–34. doi:10.1016/j.amjcard.2015.02.024.

    Article  PubMed  Google Scholar 

  72. 72.

    Kitzman DW, Brubaker P, Morgan T, Haykowsky M, Hundley G, Kraus WE, et al. Effect of caloric restriction or aerobic exercise training on peak oxygen consumption and quality of life in obese older patients with heart failure with preserved ejection fraction: a randomized clinical trial. JAMA. 2016;315:36–46. doi:10.1001/jama.2015.17346.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Institute of Medicine. Dietary reference intakes for water, potassium, sodium, chloride, and sulfate. Washington, DC: The National Academies Press; 2005.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Justin A. Ezekowitz MBBCh, MSc.

Ethics declarations

Conflict of Interest

Eloisa Colin-Ramirez and JoAnne Arcand each declare no potential conflicts of interest. Justin A. Ezekowitz holds a Population Health Investigator award from Alberta Innovates-Health Solutions and is the Principal Investigator of a the SODIUM-HF trial funded by the Canadian Institutes of Health Research.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Heart Failure

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Colin-Ramirez, E., Arcand, J. & Ezekowitz, J.A. Dietary Self-management in Heart Failure: High Tech or High Touch?. Curr Treat Options Cardio Med 19, 19 (2017). https://doi.org/10.1007/s11936-017-0515-9

Download citation

Keywords

  • Dietary treatment
  • Heart failure
  • Sodium restriction
  • Nutrition
  • Nutrient intake