Skip to main content

Advertisement

Log in

Exploring the Complex Relationship Between Microbiota and Systemic Lupus Erythematosus

  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by various autoantibodies and multi-organ. Microbiota dysbiosis in the gut, skin, oral, and other surfaces has a significant impact on SLE development. This article summarizes relevant research and provides new microbiome-related strategies for exploring the mechanisms and treating patients with SLE.

Recent Findings

SLE patients have disruptions in multiple microbiomes, with the gut microbiota (bacteria, viruses, and fungi) and their metabolites being the most thoroughly researched. This dysbiosis can promote SLE progression through mechanisms such as the leaky gut, molecular mimicry, and epigenetic regulation.

Summary

Notwithstanding study constraints on the relationship between microbiota and SLE, specific interventions targeting the gut microbiota, such as probiotics, dietary management, and fecal microbiota transplantation, have emerged as promising SLE therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Dominguez-Bello MG, Godoy-Vitorino F, Knight R, Blaser MJ. Role of the microbiome in human development. Gut. 2019;68(6):1108–14. https://doi.org/10.1136/gutjnl-2018-317503.

    Article  CAS  PubMed  Google Scholar 

  2. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207–14. https://doi.org/10.1038/nature11234.

  3. Kishikawa T, Maeda Y, Nii T, Motooka D, Matsumoto Y, Matsushita M, et al. Metagenome-wide association study of gut microbiome revealed novel aetiology of rheumatoid arthritis in the Japanese population. Ann Rheum Dis. 2020;79(1):103–11. https://doi.org/10.1136/annrheumdis-2019-215743.

    Article  CAS  PubMed  Google Scholar 

  4. Chen BD, Jia XM, Xu JY, Zhao LD, Ji JY, Wu BX, et al. An autoimmunogenic and proinflammatory profile defined by the gut microbiota of patients with untreated systemic lupus erythematosus. Arthritis Rheumatology (Hoboken, NJ). 2021;73(2):232–43. https://doi.org/10.1002/art.41511.

    Article  CAS  Google Scholar 

  5. Kishikawa T, Ogawa K, Motooka D, Hosokawa A, Kinoshita M, Suzuki K, et al. A metagenome-wide association study of gut microbiome in patients with multiple sclerosis revealed novel disease pathology. Front Cell Infect Microbiol. 2020;10:585973. https://doi.org/10.3389/fcimb.2020.585973.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cano-Ortiz A, Laborda-Illanes A, Plaza-Andrades I, Membrillo Del Pozo A, Villarrubia Cuadrado A, Rodríguez Calvo de Mora M, et al. Connection between the gut microbiome, systemic inflammation, gut permeability and FOXP3 expression in patients with primary Sjögren’s syndrome. International Journal of Molecular Sciences. 2020;21(22). https://doi.org/10.3390/ijms21228733.

  7. Fanouriakis A, Tziolos N, Bertsias G, Boumpas DT. Update οn the diagnosis and management of systemic lupus erythematosus. Ann Rheum Dis. 2021;80(1):14–25. https://doi.org/10.1136/annrheumdis-2020-218272.

    Article  PubMed  Google Scholar 

  8. Woo JMP, Parks CG, Jacobsen S, Costenbader KH, Bernatsky S. The role of environmental exposures and gene-environment interactions in the etiology of systemic lupus erythematous. J Intern Med. 2022;291(6):755–78. https://doi.org/10.1111/joim.13448.

    Article  CAS  PubMed  Google Scholar 

  9. Li Y, Wang HF, Li X, Li HX, Zhang Q, Zhou HW, et al. 2019 Disordered intestinal microbes are associated with the activity of systemic lupus erythematosus. Clinical science (London, England : 1979) 133(7):821–38. https://doi.org/10.1042/cs20180841.

  10. Zhou HY, Cao NW, Guo B, Chen WJ, Tao JH, Chu XJ, et al. Systemic lupus erythematosus patients have a distinct structural and functional skin microbiota compared with controls. Lupus. 2021;30(10):1553–64. https://doi.org/10.1177/09612033211025095.

    Article  CAS  PubMed  Google Scholar 

  11. Liu F, Ren T, Li X, Zhai Q, Xu X, Zhang N, et al. Distinct microbiomes of gut and saliva in patients with systemic lupus erythematous and clinical associations. Front Immunol. 2021;12:626217. https://doi.org/10.3389/fimmu.2021.626217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. James WA, Ogunrinde E, Wan Z, Kamen DL, Oates J, Gilkeson GS, et al. A distinct plasma microbiome but not gut microbiome in patients with systemic lupus erythematosus compared to healthy individuals. J Rheumatol. 2022;49(6):592–7. https://doi.org/10.3899/jrheum.210952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gomaa EZ. Human gut microbiota/microbiome in health and diseases: a review. Antonie Van Leeuwenhoek. 2020;113(12):2019–40. https://doi.org/10.1007/s10482-020-01474-7.

    Article  PubMed  Google Scholar 

  14. Heintz-Buschart A, Wilmes P. Human gut microbiome: function matters. Trends Microbiol. 2018;26(7):563–74. https://doi.org/10.1016/j.tim.2017.11.002.

    Article  CAS  PubMed  Google Scholar 

  15. Hevia A, Milani C, López P, Cuervo A, Arboleya S, Duranti S, et al. 2014 Intestinal dysbiosis associated with systemic lupus erythematosus. mBio (5):01548–14. https://doi.org/10.1128/mBio.01548-14.

  16. Xiang K, Wang P, Xu Z, Hu YQ, He YS, Chen Y, et al. Causal effects of gut microbiome on systemic lupus erythematosus: a two-sample mendelian randomization study. Front Immunol. 2021;12:667097. https://doi.org/10.3389/fimmu.2021.667097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xu Q, Ni JJ, Han BX, Yan SS, Wei XT, Feng GJ, et al. Causal relationship between gut microbiota and autoimmune diseases: a two-sample Mendelian randomization study. Front Immunol. 2021;12:746998. https://doi.org/10.3389/fimmu.2021.746998.

    Article  CAS  PubMed  Google Scholar 

  18. He Z, Shao T, Li H, Xie Z, Wen C. Alterations of the gut microbiome in Chinese patients with systemic lupus erythematosus. Gut pathogens. 2016;8:64. https://doi.org/10.1186/s13099-016-0146-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang Y, Wei J, Zhang W, Doherty M, Zhang Y, Xie H, et al. Gut dysbiosis in rheumatic diseases: a systematic review and meta-analysis of 92 observational studies. EBioMedicine. 2022;80:104055. https://doi.org/10.1016/j.ebiom.2022.104055This article conducted a systematic review in various rheumatic diseases and identified similarities and differences among these diseases

  20. Azzouz D, Omarbekova A, Heguy A, Schwudke D, Gisch N, Rovin BH, et al. Lupus nephritis is linked to disease-activity associated expansions and immunity to a gut commensal. Annals of the rheumatic diseases. 2019;78(7):947-56. https://doi.org/10.1136/annrheumdis-2018-214856The article revealed that Ruminococcus gnavus contributes to the pathogenesis of lupus nephritis by molecular mimicry.

  21. Wen M, Liu T, Zhao M, Dang X, Feng S, Ding X, et al. Correlation Analysis between gut microbiota and metabolites in children with systemic lupus erythematosus. J Immunol Res. 2021;2021:5579608. https://doi.org/10.1155/2021/5579608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Santiago-Rodriguez TM, Hollister EB. Human virome and disease: high-throughput sequencing for virus discovery, identification of phage-bacteria dysbiosis and development of therapeutic approaches with emphasis on the human gut. Viruses. 2019;11(7). https://doi.org/10.3390/v11070656.

  23. Dutilh BE, Cassman N, McNair K, Sanchez SE, Silva GG, Boling L, et al. A highly abundant bacteriophage discovered in the unknown sequences of human faecal metagenomes. Nat Commun. 2014;5:4498. https://doi.org/10.1038/ncomms5498.

    Article  CAS  PubMed  Google Scholar 

  24. Chen C, Yan Q, Yao X, Li S, Lv Q, Wang G, et al. Alterations of the gut virome in patients with systemic lupus erythematosus. Front Immunol. 2022;13:1050895. https://doi.org/10.3389/fimmu.2022.1050895.

    Article  CAS  PubMed  Google Scholar 

  25. Tomofuji Y, Kishikawa T, Maeda Y, Ogawa K, Nii T, Okuno T, et al. Whole gut virome analysis of 476 Japanese revealed a link between phage and autoimmune disease. Annals of the rheumatic diseases. 2022;81(2):278-88. https://doi.org/10.1136/annrheumdis-2021-221267This article filled the gap in the study of viruses in the autoimmunity associated gut microbiome.

  26. d'Enfert C, Kaune AK, Alaban LR, Chakraborty S, Cole N, Delavy M, et al. The impact of the fungus-host-microbiota interplay upon Candida albicans infections: current knowledge and new perspectives. FEMS microbiology reviews. 2021;45(3). https://doi.org/10.1093/femsre/fuaa060.

  27. Lapiere A, Richard ML. Bacterial-fungal metabolic interactions within the microbiota and their potential relevance in human health and disease: a short review. Gut microbes. 2022;14(1):2105610. https://doi.org/10.1080/19490976.2022.2105610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Guinan J, Wang S, Hazbun TR, Yadav H, Thangamani S. Antibiotic-induced decreases in the levels of microbial-derived short-chain fatty acids correlate with increased gastrointestinal colonization of Candida albicans. Sci Rep. 2019;9(1):8872. https://doi.org/10.1038/s41598-019-45467-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Doron I, Mesko M, Li XV, Kusakabe T, Leonardi I, Shaw DG, et al. Mycobiota-induced IgA antibodies regulate fungal commensalism in the gut and are dysregulated in Crohn’s disease. Nat Microbiol. 2021;6(12):1493–504. https://doi.org/10.1038/s41564-021-00983-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li BZ, Wang H, Li XB, Zhang QR, Huang RG, Wu H, et al. Altered gut fungi in systemic lupus erythematosus - a pilot study. Front Microbiol. 2022;13:1031079. https://doi.org/10.3389/fmicb.2022.1031079.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chen YF, Hsieh AH, Wang LC, Huang YJ, Yun-Chen T, Tseng WY, et al. Fecal microbiota changes in NZB/W F1 mice after induction of lupus disease. Sci Rep. 2021;11(1):22953. https://doi.org/10.1038/s41598-021-02422-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Luo XM, Edwards MR, Mu Q, Yu Y, Vieson MD, Reilly CM, et al. Gut microbiota in human systemic lupus erythematosus and a mouse model of lupus. Applied and environmental microbiology. 2018;84(4). https://doi.org/10.1128/aem.02288-17.

  33. Zhang H, Liao X, Sparks JB, Luo XM. Dynamics of gut microbiota in autoimmune lupus. Appl Environ Microbiol. 2014;80(24):7551–60. https://doi.org/10.1128/aem.02676-14.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zegarra-Ruiz DF, El Beidaq A, Iñiguez AJ, Lubrano Di Ricco M, Manfredo Vieira S, Ruff WE, et al. 2019 A diet-sensitive commensal Lactobacillus strain mediates TLR7-dependent systemic autoimmunity. Cell host & microbe. (1):113–27.6 https://doi.org/10.1016/j.chom.2018.11.009

  35. Toumi E, Goutorbe B, Plauzolles A, Bonnet M, Mezouar S, Militello M, et al. Gut microbiota in systemic lupus erythematosus patients and lupus mouse model: a cross species comparative analysis for biomarker discovery. Front Immunol. 2022;13:943241. https://doi.org/10.3389/fimmu.2022.943241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 2016;14(8):1002533. https://doi.org/10.1371/journal.pbio.1002533.

    Article  CAS  Google Scholar 

  37. Ruff WE, Greiling TM, Kriegel MA. Host-microbiota interactions in immune-mediated diseases. Nat Rev Microbiol. 2020;18(9):521–38. https://doi.org/10.1038/s41579-020-0367-2.

    Article  CAS  PubMed  Google Scholar 

  38. Huang C, Yi X, Long H, Zhang G, Wu H, Zhao M, et al. Disordered cutaneous microbiota in systemic lupus erythematosus. J Autoimmun. 2020;108:102391. https://doi.org/10.1016/j.jaut.2019.102391.

    Article  PubMed  Google Scholar 

  39. Terui H, Yamasaki K, Wada-Irimada M, Onodera-Amagai M, Hatchome N, Mizuashi M, et al. Staphylococcus aureus skin colonization promotes SLE-like autoimmune inflammation via neutrophil activation and the IL-23/IL-17 axis. Sci Immunol. 2022;7(76):9811. https://doi.org/10.1126/sciimmunol.abm9811.

    Article  Google Scholar 

  40. Paetzold B, Willis JR, Pereira de Lima J, Knödlseder N, Brüggemann H, Quist SR, et al. Skin microbiome modulation induced by probiotic solutions. Microbiome. 2019;7(1):95. https://doi.org/10.1186/s40168-019-0709-3.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Verma D, Garg PK, Dubey AK. Insights into the human oral microbiome. Arch Microbiol. 2018;200(4):525–40. https://doi.org/10.1007/s00203-018-1505-3.

    Article  CAS  PubMed  Google Scholar 

  42. Kudsi M, Nahas LD, Alsawah R, Hamsho A, Omar A. The prevalence of oral mucosal lesions and related factors in systemic lupus erythematosus patients. Arthritis Res Ther. 2021;23(1):229. https://doi.org/10.1186/s13075-021-02614-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Corrêa JD, Calderaro DC, Ferreira GA, Mendonça SM, Fernandes GR, Xiao E, et al. Subgingival microbiota dysbiosis in systemic lupus erythematosus: association with periodontal status. Microbiome. 2017;5(1):34. https://doi.org/10.1186/s40168-017-0252-z.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Malcolm J, Awang RA, Oliver-Bell J, Butcher JP, Campbell L, AdradosPlanell A, et al. IL-33 Exacerbates periodontal disease through induction of RANKL. J Dent Res. 2015;94(7):968–75. https://doi.org/10.1177/0022034515577815.

    Article  CAS  PubMed  Google Scholar 

  45. Dassi E, Ferretti P, Covello G, Bertorelli R, Denti MA, De Sanctis V, et al. The short-term impact of probiotic consumption on the oral cavity microbiome. Sci Rep. 2018;8(1):10476. https://doi.org/10.1038/s41598-018-28491-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zaura E, Brandt BW, Teixeira de Mattos MJ, Buijs MJ, Caspers MP, Rashid MU, et al. Same exposure but two radically different responses to antibiotics: resilience of the salivary microbiome versus long-term microbial shifts in feces. Bio. 2015;6:01693–715. https://doi.org/10.1128/mBio.01693-15.

    Article  CAS  Google Scholar 

  47. Castillo DJ, Rifkin RF, Cowan DA, Potgieter M. The healthy human blood microbiome: fact or fiction? Front Cell Infect Microbiol. 2019;9:148. https://doi.org/10.3389/fcimb.2019.00148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Luo Z, Alekseyenko AV, Ogunrinde E, Li M, Li QZ, Huang L, et al. Rigorous plasma microbiome analysis method enables disease association discovery in clinic. Front Microbiol. 2020;11:613268. https://doi.org/10.3389/fmicb.2020.613268.

    Article  PubMed  Google Scholar 

  49. Ogunrinde E, Zhou Z, Luo Z, Alekseyenko A, Li QZ, Macedo D, et al. A link between plasma microbial translocation, microbiome, and autoantibody development in first-degree relatives of systemic lupus erythematosus patients. Arthritis & rheumatology (Hoboken, NJ). 2019;71(11):1858-68. https://doi.org/10.1002/art.40935This study showed a possible role of plasma microbial translocation in influencing autoantibody development in SLE.

  50. Brenchley JM, Douek DC. Microbial translocation across the GI tract. Annu Rev Immunol. 2012;30:149–73. https://doi.org/10.1146/annurev-immunol-020711-075001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sanford JA, Gallo RL. Functions of the skin microbiota in health and disease. Semin Immunol. 2013;25(5):370–7. https://doi.org/10.1016/j.smim.2013.09.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Reyes L, Herrera D, Kozarov E, Roldán S, Progulske-Fox A. Periodontal bacterial invasion and infection: contribution to atherosclerotic pathology. J Clin Periodontol. 2013;40(Suppl 14):S30-50. https://doi.org/10.1111/jcpe.12079.

    Article  PubMed  Google Scholar 

  53. Monaco DR, Kottapalli SV, Breitwieser FP, Anderson DE, Wijaya L, Tan K, et al. Deconvoluting virome-wide antibody epitope reactivity profiles. EBioMedicine. 2022;75:103747. https://doi.org/10.1016/j.ebiom.2021.103747.

    Article  CAS  PubMed  Google Scholar 

  54. Parikh SV, Almaani S, Brodsky S, Rovin BH. Update on lupus nephritis: core curriculum 2020. Am J Kidney Dis. 2020;76(2):265–81. https://doi.org/10.1053/j.ajkd.2019.10.017.

    Article  PubMed  Google Scholar 

  55. Liu F, Du J, Zhai Q, Hu J, Miller AW, Ren T, et al. The Bladder microbiome, metabolome, cytokines, and phenotypes in patients with systemic lupus erythematosus. Microbiol Spectrum. 2022;10(5):0021222. https://doi.org/10.1128/spectrum.00212-22.

    Article  CAS  Google Scholar 

  56. Spadoni I, Zagato E, Bertocchi A, Paolinelli R, Hot E, Di Sabatino A, et al. A gut-vascular barrier controls the systemic dissemination of bacteria. Science (New York, NY). 2015;350(6262):830–4. https://doi.org/10.1126/science.aad0135.

    Article  CAS  Google Scholar 

  57. Mu Q, Kirby J, Reilly CM, Luo XM. Leaky gut as a danger signal for autoimmune diseases. Front Immunol. 2017;8:598. https://doi.org/10.3389/fimmu.2017.00598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Saithong S, Saisorn W, Visitchanakun P, Sae-Khow K, Chiewchengchol D, Leelahavanichkul A. A synergy between endotoxin and (1→3)-beta-D-glucan enhanced neutrophil extracellular traps in candida administered dextran sulfate solution induced colitis in FcGRIIB-/- lupus mice, an Impact of intestinal fungi in lupus. J Inflamm Res. 2021;14:2333–52. https://doi.org/10.2147/jir.S305225.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Manfredo Vieira S, Hiltensperger M, Kumar V, Zegarra-Ruiz D, Dehner C, Khan N, et al. Translocation of a gut pathobiont drives autoimmunity in mice and humans. Science (New York, NY). 2018;359(6380):1156–61. https://doi.org/10.1126/science.aar7201.

    Article  CAS  Google Scholar 

  60. Fasano A. Leaky gut and autoimmune diseases. Clin Rev Allergy Immunol. 2012;42(1):71–8. https://doi.org/10.1007/s12016-011-8291-x.

    Article  CAS  PubMed  Google Scholar 

  61. McClain MT, Heinlen LD, Dennis GJ, Roebuck J, Harley JB, James JA. Early events in lupus humoral autoimmunity suggest initiation through molecular mimicry. Nat Med. 2005;11(1):85–9. https://doi.org/10.1038/nm1167.

    Article  CAS  PubMed  Google Scholar 

  62. Greiling TM, Dehner C, Chen X, Hughes K, Iñiguez AJ, Boccitto M, et al. Commensal orthologs of the human autoantigen Ro60 as triggers of autoimmunity in lupus. Sci Transl Med. 2018;10(434). https://doi.org/10.1126/scitranslmed.aan2306.

  63. Zhang SX, Wang J, Chen JW, Zhang MX, Zhang YF, Hu FY, et al. The level of peripheral regulatory T cells is linked to changes in gut commensal microflora in patients with systemic lupus erythematosus. Annals Rheumatic Dis. 2021;80(11):177. https://doi.org/10.1136/annrheumdis-2019-216504.

    Article  Google Scholar 

  64. López P, de Paz B, Rodríguez-Carrio J, Hevia A, Sánchez B, Margolles A, et al. Th17 responses and natural IgM antibodies are related to gut microbiota composition in systemic lupus erythematosus patients. Sci Rep. 2016;6:24072. https://doi.org/10.1038/srep24072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Shirakashi M, Maruya M, Hirota K, Tsuruyama T, Matsuo T, Watanabe R, et al. Effect of impaired T cell receptor signaling on the gut microbiota in a mouse model of systemic autoimmunity. Arthritis & rheumatology (Hoboken, NJ). 2022;74(4):641–53. https://doi.org/10.1002/art.42016.

    Article  CAS  Google Scholar 

  66. Zouali M. B lymphocytes, the gastrointestinal tract and autoimmunity. Autoimmunity reviews. 2021;20(4):102777. https://doi.org/10.1016/j.autrev.2021.102777.

  67. Bunker JJ, Drees C, Watson AR, Plunkett CH, Nagler CR, Schneewind O, et al. B cell superantigens in the human intestinal microbiota. Sci Transl Med. 2019;11(507). https://doi.org/10.1126/scitranslmed.aau9356.

  68. Thio CL, Chi PY, Lai AC, Chang YJ. Regulation of type 2 innate lymphoid cell-dependent airway hyperreactivity by butyrate. J Allergy Clin Immunol. 2018;142(6):1867-83.e12. https://doi.org/10.1016/j.jaci.2018.02.032.

    Article  CAS  PubMed  Google Scholar 

  69. Xiao S, Jiang S, Qian D, Duan J. Modulation of microbially derived short-chain fatty acids on intestinal homeostasis, metabolism, and neuropsychiatric disorder. Appl Microbiol Biotechnol. 2020;104(2):589–601. https://doi.org/10.1007/s00253-019-10312-4.

    Article  CAS  PubMed  Google Scholar 

  70. Sanchez HN, Moroney JB, Gan H, Shen T, Im JL, Li T, et al. B cell-intrinsic epigenetic modulation of antibody responses by dietary fiber-derived short-chain fatty acids. Nature communications. 2020;11(1):60. https://doi.org/10.1038/s41467-019-13603-6This study demonstrated the impact of SCFA on B cell by epigenetic modulation.

  71. Liu Y, Hou Y, Wang G, Zheng X, Hao H. Gut microbial metabolites of aromatic amino acids as signals in host-microbe interplay. Trends Endocrinol Metab. 2020;31(11):818–34. https://doi.org/10.1016/j.tem.2020.02.012.

    Article  CAS  PubMed  Google Scholar 

  72. Wu J, Pang T, Lin Z, Zhao M, Jin H. The key player in the pathogenesis of environmental influence of systemic lupus erythematosus: Aryl hydrocarbon receptor. Front Immunol. 2022;13:965941. https://doi.org/10.3389/fimmu.2022.965941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Choi SC, Brown J, Gong M, Ge Y, Zadeh M, Li W, et al. Gut microbiota dysbiosis and altered tryptophan catabolism contribute to autoimmunity in lupus-susceptible mice. Sci Transl Med. 2020;12(551). https://doi.org/10.1126/scitranslmed.aax2220.

  74. Wu HJ, Ivanov II, Darce J, Hattori K, Shima T, Umesaki Y, et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity. 2010;32(6):815–27. https://doi.org/10.1016/j.immuni.2010.06.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hong H, Alduraibi F, Ponder D, Duck WL, Morrow CD, Foote JB, et al. Host genetics but not commensal microbiota determines the initial development of systemic autoimmune disease in BXD2 mice. Arthritis & rheumatology (Hoboken, NJ). 2022;74(4):634–40. https://doi.org/10.1002/art.42008.

    Article  CAS  Google Scholar 

  76. Clancy RM, Marion MC, Ainsworth HC, Chang M, Howard TD, Izmirly PM, et al. Gut dysbiosis and the clinical spectrum in anti-Ro positive mothers of children with neonatal lupus. Gut microbes. 2022;14(1):2081474. https://doi.org/10.1080/19490976.2022.2081474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Xiang S, Qu Y, Qian S, Wang R, Wang Y, Jin Y, et al. Association between systemic lupus erythematosus and disruption of gut microbiota: a meta-analysis. Lupus science & medicine. 2022;9(1). https://doi.org/10.1136/lupus-2021-000599.

  78. Jackson MA, Verdi S, Maxan ME, Shin CM, Zierer J, Bowyer RCE, et al. Gut microbiota associations with common diseases and prescription medications in a population-based cohort. Nat Commun. 2018;9(1):2655. https://doi.org/10.1038/s41467-018-05184-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. He Z, Kong X, Shao T, Zhang Y, Wen C. Alterations of the gut microbiota associated with promoting efficacy of prednisone by bromofuranone in MRL/lpr mice. Front Microbiol. 2019;10:978. https://doi.org/10.3389/fmicb.2019.00978.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Guo M, Wang H, Xu S, Zhuang Y, An J, Su C, et al. Alteration in gut microbiota is associated with dysregulation of cytokines and glucocorticoid therapy in systemic lupus erythematosus. Gut microbes. 2020;11(6):1758–73. https://doi.org/10.1080/19490976.2020.1768644.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Wang M, Zhu Z, Lin X, Li H, Wen C, Bao J, et al. Gut microbiota mediated the therapeutic efficacies and the side effects of prednisone in the treatment of MRL/lpr mice. Arthritis Res Ther. 2021;23(1):240. https://doi.org/10.1186/s13075-021-02620-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Pan ZY, Chang YX, Han N, Hou FY, Lee BJY, Zhi FC, et al. Short-term high-dose gavage of hydroxychloroquine changes gut microbiota but not the intestinal integrity and immunological responses in mice. Life Sci. 2021;264:118450. https://doi.org/10.1016/j.lfs.2020.118450.

    Article  CAS  PubMed  Google Scholar 

  83. Kim SK, Guevarra RB, Kim YT, Kwon J, Kim H, Cho JH, et al. Role of probiotics in human gut microbiome-associated diseases. J Microbiol Biotechnol. 2019;29(9):1335–40. https://doi.org/10.4014/jmb.1906.06064.

    Article  PubMed  Google Scholar 

  84. Li C, Niu Z, Zou M, Liu S, Wang M, Gu X, et al. Probiotics, prebiotics, and synbiotics regulate the intestinal microbiota differentially and restore the relative abundance of specific gut microorganisms. J Dairy Sci. 2020;103(7):5816–29. https://doi.org/10.3168/jds.2019-18003.

    Article  CAS  PubMed  Google Scholar 

  85. Mu Q, Zhang H, Liao X, Lin K, Liu H, Edwards MR, et al. Control of lupus nephritis by changes of gut microbiota. Microbiome. 2017;5(1):73. https://doi.org/10.1186/s40168-017-0300-8.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Hsu TC, Huang CY, Liu CH, Hsu KC, Chen YH, Tzang BS. Lactobacillus paracasei GMNL-32, Lactobacillus reuteri GMNL-89 and L reuteri GMNL-263 ameliorate hepatic injuries in lupus-prone mice. British J Nutri. 2017;117(8):1066–74. https://doi.org/10.1017/s0007114517001039.

    Article  CAS  Google Scholar 

  87. Hu WS, Rajendran P, Tzang BS, Yeh YL, Shen CY, Chen RJ, et al. Lactobacillus paracasei GMNL-32 exerts a therapeutic effect on cardiac abnormalities in NZB/W F1 mice. PLoS ONE. 2017;12(9):0185098. https://doi.org/10.1371/journal.pone.0185098.

    Article  CAS  Google Scholar 

  88. Yeh YL, Lu MC, Tsai BC, Tzang BS, Cheng SM, Zhang X, et al. Heat-killed Lactobacillus reuteri GMNL-263 inhibits systemic lupus erythematosus-induced cardiomyopathy in NZB/W F1 mice. Probiotics and antimicrobial proteins. 2021;13(1):51–9. https://doi.org/10.1007/s12602-020-09668-1.

    Article  CAS  PubMed  Google Scholar 

  89. Widhani A, Djauzi S, Suyatna FD, Dewi BE. Changes in gut microbiota and systemic inflammation after synbiotic supplementation in patients with systemic lupus erythematosus: a randomized, double-blind, placebo-controlled trial. Cells. 2022;11(21). https://doi.org/10.3390/cells11213419.

  90. Schäfer AL, Eichhorst A, Hentze C, Kraemer AN, Amend A, Sprenger DTL, et al. Low dietary fiber intake links development of obesity and lupus pathogenesis. Front Immunol. 2021;12:696810. https://doi.org/10.3389/fimmu.2021.696810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Putri PZ, Hamijoyo L, Sahiratmadja E. The role of diet in influencing the diversity of gut microbiome related to lupus disease activities: a systematic review. Int J Microbiol. 2022;2022:6908677. https://doi.org/10.1155/2022/6908677.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Islam MA, Khandker SS, Kotyla PJ, Hassan R. Immunomodulatory effects of diet and nutrients in systemic lupus erythematosus (SLE): a systematic review. Front Immunol. 2020;11:1477. https://doi.org/10.3389/fimmu.2020.01477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Quraishi MN, Widlak M, Bhala N, Moore D, Price M, Sharma N, et al. Systematic review with meta-analysis: the efficacy of faecal microbiota transplantation for the treatment of recurrent and refractory Clostridium difficile infection. Aliment Pharmacol Ther. 2017;46(5):479–93. https://doi.org/10.1111/apt.14201.

    Article  CAS  PubMed  Google Scholar 

  94. Watane A, Cavuoto KM, Rojas M, Dermer H, Day JO, Banerjee S, et al. Fecal microbial transplant in individuals with immune-mediated dry eye. Am J Ophthalmol. 2022;233:90–100. https://doi.org/10.1016/j.ajo.2021.06.022.

    Article  CAS  PubMed  Google Scholar 

  95. Ma Y, Xu X, Li M, Cai J, Wei Q, Niu H. Gut microbiota promote the inflammatory response in the pathogenesis of systemic lupus erythematosus. Mole Med (Cambridge, Mass). 2019;25(1):35. https://doi.org/10.1186/s10020-019-0102-5.

    Article  CAS  Google Scholar 

  96. Huang C, Yi P, Zhu M, Zhou W, Zhang B, Yi X, et al. Safety and efficacy of fecal microbiota transplantation for treatment of systemic lupus erythematosus: an EXPLORER trial. J autoimmunity. 2022;130:102844. https://doi.org/10.1016/j.jaut.2022.102844.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Figure 1 was created by Yu Lei using software available at Biorender.com.

Funding

This work is supported by the National Key R&D Program of China (2022YFC3601800), the CAMS Innovation Fund for Medical Sciences (CIFMS) No.2021-I2M-1–059, the Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences (2020-RC320-003), the National Natural Science Foundation of China (No. 81830097), and the Special Program of National Natural Science Foundation of China (No. 32141004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ming Zhao or Qianjin Lu.

Ethics declarations

Conflict of Interest

The authors declare no competing interest.

Human and Animal Rights and Informed Consent.

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, Y., Liu, Q., Li, Q. et al. Exploring the Complex Relationship Between Microbiota and Systemic Lupus Erythematosus. Curr Rheumatol Rep 25, 107–116 (2023). https://doi.org/10.1007/s11926-023-01102-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11926-023-01102-z

Keywords

Navigation