Skip to main content

Advertisement

Log in

Gut Microbiota in Bone Health and Diabetes

  • Bone and Diabetes (A Schwartz and P Vestergaard, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

A Correction to this article was published on 22 July 2021

This article has been updated

Abstract

Purpose of Review

Patients with diabetes mellitus (DM) are at increased risk of developing osteopathogenesis and skeletal fragility. The role of the gut microbiota in both DM and osteopathy is not fully explored and may be involved in the pathology of both diseases.

Recent Findings

Gut microbiota alterations have been observed in DM and osteopathogenic disorders as compared with healthy controls, such as significantly lower abundance of Prevotella and higher abundance of Lactobacillus, with a diminished bacterial diversity. Other overlapping gastro-intestinal features include the loss of intestinal barrier function with translocation of bacterial metabolites to the blood stream, induction of immunological deficits and changes in hormonal and endocrinal signalling, which may lead to the development of diabetic osteopathy.

Summary

Signalling pathways involved in both DM and osteopathy are affected by gut bacteria and their metabolites. Future studies should focus on gut microbiota involvement in both diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

No new data was generated in this manuscript.

Change history

Abbreviations

BMD:

bone mineral density

GLP-1:

glucagon-like peptide-1

IL-1β:

interleukin-1β

LPS:

lipopolysaccharide

OVX:

ovariectomy

SCFAs:

short-chain fatty acids

T1D:

type 1 diabetes

T2D:

type 2 diabetes

TNF-α:

tumour necrosis factor-alpha

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Collaboration NCDRF. Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet. 2016;387(10027):1513–30.

    Article  Google Scholar 

  2. Leon BM, Maddox TM. Diabetes and cardiovascular disease: Epidemiology, biological mechanisms, treatment recommendations and future research. World J Diabetes. 2015;6(13):1246–58.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lim A. Diabetic nephropathy - complications and treatment. Int J Nephrol Renovasc Dis. 2014;7:361–81.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Vinik A, Casellini C, Nevoret ML. Diabetic neuropathies. In: Feingold KR, Anawalt B, Boyce A, Chrousos G, Dungan K, Grossman A, et al., editors. Endotext: South Dartmouth (MA); 2000.

  5. Carnevale V, Romagnoli E, D'Erasmo E. Skeletal involvement in patients with diabetes mellitus. Diabetes Metab Res Rev. 2004;20(3):196–204.

    Article  PubMed  Google Scholar 

  6. Trikkalinou A, Papazafiropoulou AK, Melidonis A. Type 2 diabetes and quality of life. World J Diabetes. 2017;8(4):120–9.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lecka-Czernik B. Diabetes, bone and glucose-lowering agents: basic biology. Diabetologia. 2017;60(7):1163–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Poiana C, Capatina C. Fracture risk assessment in patients with diabetes mellitus. J Clin Densitom. 2017;20(3):432–43.

    Article  PubMed  Google Scholar 

  9. Jackuliak P, Payer J. Osteoporosis, fractures, and diabetes. Int J Endocrinol. 2014;2014:820615.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Strotmeyer ES, Cauley JA. Diabetes mellitus, bone mineral density, and fracture risk. Curr Opin Endocrinol Diabetes Obes. 2007;14(6):429–35.

    Article  PubMed  Google Scholar 

  11. Vestergaard P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes--a meta-analysis. Osteoporos Int. 2007;18(4):427–44.

    Article  CAS  PubMed  Google Scholar 

  12. Purnamasari D, Puspitasari MD, Setiyohadi B, Nugroho P, Isbagio H. Low bone turnover in premenopausal women with type 2 diabetes mellitus as an early process of diabetes-associated bone alterations: a cross-sectional study. BMC Endocr Disord. 2017;17(1):72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Singhal V, Bredella MA. Marrow adipose tissue imaging in humans. Bone. 2019;118:69–76.

    Article  PubMed  Google Scholar 

  14. Chen Z, Zhao GH, Zhang YK, Shen GS, Xu YJ, Xu NW. Research on the correlation of diabetes mellitus complicated with osteoporosis with lipid metabolism, adipokines and inflammatory factors and its regression analysis. Eur Rev Med Pharmacol Sci. 2017;21(17):3900–5.

    CAS  PubMed  Google Scholar 

  15. Goldshtein I, Nguyen AM, de Papp AE, Ish-Shalom S, Chandler JM, Chodick G, et al. Epidemiology and correlates of osteoporotic fractures among type 2 diabetic patients. Arch Osteoporos. 2018;13(1):15.

    Article  PubMed  Google Scholar 

  16. Xu H, Wang Z, Li X, Fan M, Bao C, Yang R, et al. Osteoporosis and Osteopenia Among Patients With Type 2 Diabetes Aged >/=50: Role of Sex and Clinical Characteristics. J Clin Densitom. 2020;23(1):29–36.

    Article  PubMed  Google Scholar 

  17. Kanazawa I, Notsu M, Miyake H, Tanaka K, Sugimoto T. Assessment using serum insulin-like growth factor-I and bone mineral density is useful for detecting prevalent vertebral fractures in patients with type 2 diabetes mellitus. Osteoporos Int. 2018;29(11):2527–35.

    Article  CAS  PubMed  Google Scholar 

  18. Kanazawa I, Sugimoto T. Diabetes Mellitus-induced Bone Fragility. Intern Med. 2018;57(19):2773–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhong N, Zhang Y, Pu X, Xu B, Xu M, Cai H, et al. Microangiopathy is associated with bone loss in female type 2 diabetes mellitus patients. Diab Vasc Dis Res. 2018;15(5):433–41.

    Article  PubMed  Google Scholar 

  20. Mitchell DM, Caksa S, Joseph T, Bouxsein ML, Misra M. Elevated HbA1c Is Associated with Altered Cortical and Trabecular Microarchitecture in Girls with Type 1 Diabetes. J Clin Endocrinol Metab. 2020;105(4).

  21. Fuusager GB, Christesen HT, Milandt N, Schou AJ. Glycemic control and bone mineral density in children and adolescents with type 1 diabetes. Pediatr Diabetes. 2019;20(5):629–36.

    CAS  PubMed  Google Scholar 

  22. Li KH, Liu YT, Yang YW, Lin YL, Hung ML, Lin IC. A positive correlation between blood glucose level and bone mineral density in Taiwan. Arch Osteoporos. 2018;13(1):78.

    Article  PubMed  Google Scholar 

  23. Guo L, Gao Z, Ge H. Effects of serum 25-hydroxyvitaminD level on decreased bone mineral density at femoral neck and total hip in Chinese type 2 diabetes. PLoS One. 2017;12(11):e0188894.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Usala RL, Fernandez SJ, Mete M, Shara NM, Verbalis JG. Hyponatremia is associated with increased osteoporosis and bone fractures in patients with diabetes with matched glycemic control. J Endocr Soc. 2019;3(2):411–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang Y, Liu G, Zhang Y, Xu G, Yi X, Liang J, et al. Association between bone mineral density, bone turnover markers, and serum cholesterol levels in type 2 diabetes. Front Endocrinol (Lausanne). 2018;9:646.

    Article  Google Scholar 

  26. Engberg E, Koivusalo SB, Huvinen E, Viljakainen H. Bone health in women with a history of gestational diabetes or obesity. Acta Obstet Gynecol Scand. 2020;99(4):477–87.

    Article  PubMed  Google Scholar 

  27. Schwartz AV. Diabetes, bone and glucose-lowering agents: clinical outcomes. Diabetologia. 2017;60(7):1170–9.

    Article  CAS  PubMed  Google Scholar 

  28. Madsen JOB, Herskin CW, Zerahn B, Jensen AK, Jorgensen NR, Olsen BS, et al. Unaffected bone mineral density in Danish children and adolescents with type 1 diabetes. J Bone Miner Metab. 2020;38(3):328–37.

    Article  CAS  PubMed  Google Scholar 

  29. Roh JG, Yoon JS, Park KJ, Lim JS, Lee HS, Hwang JS. Evaluation of bone mineral status in prepuberal children with newly diagnosed type 1 diabetes. Ann Pediatr Endocrinol Metab. 2018;23(3):136–40.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Costantini S, Conte C. Bone health in diabetes and prediabetes. World J Diabetes. 2019;10(8):421–45.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Iki M, Fujita Y, Kouda K, Yura A, Tachiki T, Tamaki J, et al. Hyperglycemia is associated with increased bone mineral density and decreased trabecular bone score in elderly Japanese men: The Fujiwara-kyo osteoporosis risk in men (FORMEN) study. Bone. 2017;105:18–25.

    Article  CAS  PubMed  Google Scholar 

  32. Hamilton EJ, Drinkwater JJ, Chubb SAP, Rakic V, Kamber N, Zhu K, et al. A 10-year prospective study of bone mineral density and bone turnover in males and females with type 1 diabetes. J Clin Endocrinol Metab. 2018;103(9):3531–9.

    Article  PubMed  Google Scholar 

  33. Goldman AL, Donlon CM, Cook NR, Manson JE, Buring JE, Copeland T, et al. VITamin D and OmegA-3 TriaL (VITAL) bone health ancillary study: clinical factors associated with trabecular bone score in women and men. Osteoporos Int. 2018;29(11):2505–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cortet B, Lucas S, Legroux-Gerot I, Penel G, Chauveau C, Paccou J. Bone disorders associated with diabetes mellitus and its treatments. Joint Bone Spine. 2019;86(3):315–20.

    Article  CAS  PubMed  Google Scholar 

  35. DeShields SC, Cunningham TD. Comparison of osteoporosis in US adults with type 1 and type 2 diabetes mellitus. J Endocrinol Invest. 2018;41(9):1051–60.

    Article  CAS  PubMed  Google Scholar 

  36. Holm JP, Jensen T, Hyldstrup L, Jensen JB. Fracture risk in women with type II diabetes. Results from a historical cohort with fracture follow-up. Endocrine. 2018;60(1):151–8.

    Article  CAS  PubMed  Google Scholar 

  37. Schroeder BO, Backhed F. Signals from the gut microbiota to distant organs in physiology and disease. Nat Med. 2016;22(10):1079–89.

    Article  CAS  PubMed  Google Scholar 

  38. Lynch SV, Pedersen O. The human intestinal microbiome in health and disease. N Engl J Med. 2016;375(24):2369–79.

    Article  CAS  PubMed  Google Scholar 

  39. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li J, Jia H, Cai X, Zhong H, Feng Q, Sunagawa S, et al. An integrated catalog of reference genes in the human gut microbiome. Nat Biotechnol. 2014;32(8):834–41.

    Article  CAS  PubMed  Google Scholar 

  41. Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, et al. Metagenomic analysis of the human distal gut microbiome. Science. 2006;312(5778):1355–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Almeida A, Mitchell AL, Boland M, Forster SC, Gloor GB, Tarkowska A, et al. A new genomic blueprint of the human gut microbiota. Nature. 2019;568(7753):499–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486(7402):222–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yadav D, Ghosh TS, Mande SS. Global investigation of composition and interaction networks in gut microbiomes of individuals belonging to diverse geographies and age-groups. Gut pathogens. 2016;8:17.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature. 2012;489(7415):220–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Singh RK, Chang HW, Yan D, Lee KM, Ucmak D, Wong K, et al. Influence of diet on the gut microbiome and implications for human health. J Transl Med. 2017;15(1):73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Conlon MA, Bird AR. The impact of diet and lifestyle on gut microbiota and human health. Nutrients. 2014;7(1):17–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Maier L, Pruteanu M, Kuhn M, Zeller G, Telzerow A, Anderson EE, et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature. 2018;555(7698):623–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rowland I, Gibson G, Heinken A, Scott K, Swann J, Thiele I, et al. Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr. 2018;57(1):1–24.

    Article  CAS  PubMed  Google Scholar 

  50. Ramakrishna BS. Role of the gut microbiota in human nutrition and metabolism. J Gastroenterol Hepatol. 2013;28(Suppl 4):9–17.

    Article  CAS  PubMed  Google Scholar 

  51. Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell. 2014;157(1):121–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wu HJ, Wu E. The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes. 2012;3(1):4–14.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Zimmermann M, Zimmermann-Kogadeeva M, Wegmann R, Goodman AL. Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature. 2019;570(7762):462–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sousa T, Paterson R, Moore V, Carlsson A, Abrahamsson B, Basit AW. The gastrointestinal microbiota as a site for the biotransformation of drugs. Int J Pharm. 2008;363(1-2):1–25.

    Article  CAS  PubMed  Google Scholar 

  55. DeGruttola AK, Low D, Mizoguchi A, Mizoguchi E. Current understanding of dysbiosis in disease in human and animal models. Inflamm Bowel Dis. 2016;22(5):1137–50.

    Article  PubMed  Google Scholar 

  56. Carding S, Verbeke K, Vipond DT, Corfe BM, Owen LJ. Dysbiosis of the gut microbiota in disease. Microb Ecol Health Dis. 2015;26:26191.

    PubMed  Google Scholar 

  57. Fischbach MA, Segre JA. Signaling in host-associated microbial communities. Cell. 2016;164(6):1288–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jones RM. The influence of the gut microbiota on host physiology: in pursuit of mechanisms. Yale J Biol Med. 2016;89(3):285–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes. 2016;7(3):189–200.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Palsson-McDermott EM, O'Neill LA. Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4. Immunology. 2004;113(2):153–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Guo S, Al-Sadi R, Said HM, Ma TY. Lipopolysaccharide causes an increase in intestinal tight junction permeability in vitro and in vivo by inducing enterocyte membrane expression and localization of TLR-4 and CD14. Am J Pathol. 2013;182(2):375–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wells JM, Brummer RJ, Derrien M, MacDonald TT, Troost F, Cani PD, et al. Homeostasis of the gut barrier and potential biomarkers. Am J Physiol Gastrointest Liver Physiol. 2016;312(3):G171–93. https://doi.org/10.1152/ajpgi.00048.2015.

  63. Peng L, Li ZR, Green RS, Holzman IR, Lin J. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J Nutr. 2009;139(9):1619–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Parada Venegas D, De la Fuente MK, Landskron G, Gonzalez MJ, Quera R, Dijkstra G, et al. Short Chain Fatty Acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol. 2019;10:277.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Mu Q, Kirby J, Reilly CM, Luo XM. Leaky gut as a danger signal for autoimmune diseases. Front Immunol. 2017;8:598.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Gevers D, Kugathasan S, Denson LA, Vazquez-Baeza Y, Van Treuren W, Ren B, et al. The treatment-naive microbiome in new-onset Crohn's disease. Cell Host Microbe. 2014;15(3):382–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zuo T, Ng SC. The gut microbiota in the pathogenesis and therapeutics of inflammatory bowel disease. Front Microbiol. 2018;9:2247.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Michail S, Durbin M, Turner D, Griffiths AM, Mack DR, Hyams J, et al. Alterations in the gut microbiome of children with severe ulcerative colitis. Inflam Bowel Dis. 2012;18(10):1799–808.

    Article  Google Scholar 

  69. Bundgaard-Nielsen C, Baandrup UT, Nielsen LP, Sorensen S. The presence of bacteria varies between colorectal adenocarcinomas, precursor lesions and non-malignant tissue. BMC Cancer. 2019;19(1):399.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Brennan CA, Garrett WS. Gut microbiota, inflammation, and colorectal cancer. Annu Rev Microbiol. 2016;70:395–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Louis P, Hold GL, Flint HJ. The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol. 2014;12(10):661–72.

    Article  CAS  PubMed  Google Scholar 

  72. Festi D, Schiumerini R, Eusebi LH, Marasco G, Taddia M, Colecchia A. Gut microbiota and metabolic syndrome. World J Gastroenterol. 2014;20(43):16079–94.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Naseribafrouei A, Hestad K, Avershina E, Sekelja M, Linlokken A, Wilson R, et al. Correlation between the human fecal microbiota and depression. Neurogastroenterol Motil. 2014;26(8):1155–62.

    Article  CAS  PubMed  Google Scholar 

  74. Chen JJ, Zheng P, Liu YY, Zhong XG, Wang HY, Guo YJ, et al. Sex differences in gut microbiota in patients with major depressive disorder. Neuropsychiatr Dis Treat. 2018;14:647–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Valles-Colomer M, Falony G, Darzi Y, Tigchelaar EF, Wang J, Tito RY, et al. The neuroactive potential of the human gut microbiota in quality of life and depression. Nat Microbiol. 2019;4(4):623–32.

    Article  CAS  PubMed  Google Scholar 

  76. Sampson TR, Debelius JW, Thron T, Janssen S, Shastri GG, Ilhan ZE, et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of parkinson's disease. Cell. 2016;167(6):1469–80 e12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Minato T, Maeda T, Fujisawa Y, Tsuji H, Nomoto K, Ohno K, et al. Progression of Parkinson's disease is associated with gut dysbiosis: Two-year follow-up study. PLoS One. 2017;12(11):e0187307.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Horta-Baas G, Romero-Figueroa MDS, Montiel-Jarquin AJ, Pizano-Zarate ML, Garcia-Mena J, Ramirez-Duran N. Intestinal dysbiosis and rheumatoid arthritis: a link between gut microbiota and the pathogenesis of rheumatoid arthritis. J Immunol Res. 2017;2017:4835189.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Scher JU, Abramson SB. The microbiome and rheumatoid arthritis. Nat Rev Rheumatol. 2011;7(10):569–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Scher JU, Ubeda C, Artacho A, Attur M, Isaac S, Reddy SM, et al. Decreased bacterial diversity characterizes the altered gut microbiota in patients with psoriatic arthritis, resembling dysbiosis in inflammatory bowel disease. Arthritis Rheumatol. 2015;67(1):128–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Musso G, Gambino R, Cassader M. Interactions between gut microbiota and host metabolism predisposing to obesity and diabetes. Annu Rev Med. 2011;62:361–80.

    Article  CAS  PubMed  Google Scholar 

  82. Jamshidi P, Hasanzadeh S, Tahvildari A, Farsi Y, Arbabi M, Mota JF, et al. Is there any association between gut microbiota and type 1 diabetes? A systematic review. Gut pathogens. 2019;11:49.

    Article  PubMed  Google Scholar 

  83. Zhou H, Sun L, Zhang S, Zhao X, Gang X, Wang G. Evaluating the causal role of gut microbiota in type 1 diabetes and its possible pathogenic mechanisms. Front Endocrinol (Lausanne). 2020;11:125.

    Article  Google Scholar 

  84. Gurung M, Li Z, You H, Rodrigues R, Jump DB, Morgun A, et al. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine. 2020;51:102590.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Sjogren K, Engdahl C, Henning P, Lerner UH, Tremaroli V, Lagerquist MK, et al. The gut microbiota regulates bone mass in mice. J Bone Miner Res. 2012;27(6):1357–67.

    Article  PubMed  CAS  Google Scholar 

  86. Yan J, Charles JF. Gut microbiome and bone: to build, destroy, or both? Curr Osteoporos Rep. 2017;15(4):376–84.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Hao ML, Wang GY, Zuo XQ, Qu CJ, Yao BC, Wang DL. Gut microbiota: an overlooked factor that plays a significant role in osteoporosis. J Int Med Res. 2019;47(9):4095–103.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Demirci M, Tokman HB, Uysal HK, Demiryas S, Karakullukcu A, Saribas S, et al. Reduced Akkermansia muciniphila and Faecalibacterium prausnitzii levels in the gut microbiota of children with allergic asthma. Allergol Immunopathol (Madr). 2019;47(4):365–71.

    Article  CAS  PubMed  Google Scholar 

  89. Huang J, Pearson JA, Peng J, Hu Y, Sha S, Xing Y, et al. Gut microbial metabolites alter IgA immunity in type 1 diabetes. JCI Insight. 2020;5(10).

  90. Fassatoui M, Lopez-Siles M, Diaz-Rizzolo DA, Jmel H, Naouali C, Abdessalem G, et al. Gut microbiota imbalances in Tunisian participants with type 1 and type 2 diabetes mellitus. Biosci Rep. 2019;39(6).

  91. Zhang F, Wang M, Yang J, Xu Q, Liang C, Chen B, et al. Response of gut microbiota in type 2 diabetes to hypoglycemic agents. Endocrine. 2019;66(3):485–93.

    Article  CAS  PubMed  Google Scholar 

  92. Zhong H, Ren H, Lu Y, Fang C, Hou G, Yang Z, et al. Distinct gut metagenomics and metaproteomics signatures in prediabetics and treatment-naive type 2 diabetics. EBioMedicine. 2019;47:373–83.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Salah M, Azab M, Ramadan A, Hanora A. New insights on obesity and diabetes from gut microbiome alterations in egyptian adults. OMICS. 2019;23(10):477–85.

    Article  CAS  PubMed  Google Scholar 

  94. Zhao LJ, Lou HX, Peng Y, Chen SH, Zhang YL, Li XB. Comprehensive relationships between gut microbiome and faecal metabolome in individuals with type 2 diabetes and its complications. Endocrine. 2019;66(3):526–37.

    Article  CAS  PubMed  Google Scholar 

  95. Nuli R, Azhati J, Cai J, Kadeer A, Zhang B, Mohemaiti P. Metagenomics and Faecal Metabolomics Integrative Analysis towards the Impaired Glucose Regulation and Type 2 Diabetes in Uyghur-Related Omics. J Diabetes Res. 2019;2019:2893041.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Nah G, Park SC, Kim K, Kim S, Park J, Lee S, et al. Type-2 diabetics reduces spatial variation of microbiome based on extracellur vesicles from gut microbes across human body. Sci Rep. 2019;9(1):20136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ahmad A, Yang W, Chen G, Shafiq M, Javed S, Ali Zaidi SS, et al. Analysis of gut microbiota of obese individuals with type 2 diabetes and healthy individuals. PLoS One. 2019;14(12):e0226372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Chavez-Carbajal A, Pizano-Zarate ML, Hernandez-Quiroz F, Ortiz-Luna GF, Morales-Hernandez RM, De Sales-Millan A, et al. Characterization of the gut microbiota of individuals at different t2d stages reveals a complex relationship with the host. Microorganisms. 2020;8(1).

  99. Wang J, Li W, Wang C, Wang L, He T, Hu H, et al. Enterotype bacteroides is associated with a high risk in patients with diabetes: a pilot study. J Diabetes Res. 2020;2020:6047145.

    PubMed  PubMed Central  Google Scholar 

  100. Doumatey AP, Adeyemo A, Zhou J, Lei L, Adebamowo SN, Adebamowo C, et al. Gut microbiome profiles are associated with type 2 diabetes in urban africans. Front Cell Infect Microbiol. 2020;10:63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Chen PC, Chien YW, Yang SC. The alteration of gut microbiota in newly diagnosed type 2 diabetic patients. Nutrition. 2019;63-64:51–6.

    Article  PubMed  Google Scholar 

  102. Li Q, Chang Y, Zhang K, Chen H, Tao S, Zhang Z. Implication of the gut microbiome composition of type 2 diabetic patients from northern China. Sci Rep. 2020;10(1):5450.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Gaike AH, Paul D, Bhute S, Dhotre DP, Pande P, Upadhyaya S, et al. The Gut microbial diversity of newly diagnosed diabetics but not of prediabetics is significantly different from that of healthy nondiabetics. mSystems. 2020;5(2).

  104. Wang J, Wang Y, Gao W, Wang B, Zhao H, Zeng Y, et al. Diversity analysis of gut microbiota in osteoporosis and osteopenia patients. PeerJ. 2017;5:e3450.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Das M, Cronin O, Keohane DM, Cormac EM, Nugent H, Nugent M, et al. Gut microbiota alterations associated with reduced bone mineral density in older adults. Rheumatology (Oxford). 2019;58(12):2295-304. The first cohort study of gut microbiota involvement in osteoporosis and osteopenia associating group differences between patients and controls with bone health parameters.

  106. Zhao L, Lou H, Peng Y, Chen S, Zhang Y, Li X. Comprehensive relationships between gut microbiome and faecal metabolome in individuals with type 2 diabetes and its complications. Endocrine. 2019;66(3):526–37.

    Article  CAS  PubMed  Google Scholar 

  107. . Li T, Li H, Li W, Chen S, Feng T, Jiao W, et al. Interleukin-37 sensitize the elderly type 2 diabetic patients to insulin therapy through suppressing the gut microbiota dysbiosis. Mol Immunol. 2019;112:322–9 A large prospective cohort study assessing gut microbiota differences between T2D patients and healthy controls, as well as animal research assessing the effect of diet and antibiotics on the microbial community.

    Article  CAS  PubMed  Google Scholar 

  108. Demirci M, Bahar Tokman H, Taner Z, Keskin FE, Cagatay P, Ozturk Bakar Y, et al. Bacteroidetes and Firmicutes levels in gut microbiota and effects of hosts TLR2/TLR4 gene expression levels in adult type 1 diabetes patients in Istanbul. Turkey. J Diabetes Complications. 2020;34(2):107449.

    Article  PubMed  Google Scholar 

  109. Li C, Huang Q, Yang R, Dai Y, Zeng Y, Tao L, et al. Gut microbiota composition and bone mineral loss-epidemiologic evidence from individuals in Wuhan. China. Osteoporos Int. 2019;30(5):1003–13.

    Article  CAS  PubMed  Google Scholar 

  110. Cheng S, Qi X, Ma M, Zhang L, Cheng B, Liang C, et al. Assessing the relationship between gut microbiota and bone mineral density. Front Genet. 2020;11:6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Takimoto T, Hatanaka M, Hoshino T, Takara T, Tanaka K, Shimizu A, et al. Effect of Bacillus subtilis C-3102 on bone mineral density in healthy postmenopausal Japanese women: a randomized, placebo-controlled, double-blind clinical trial. Biosci Microbiota Food Health. 2018;37(4):87–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Valdes AM, Walter J, Segal E, Spector TD. Role of the gut microbiota in nutrition and health. BMJ. 2018;361:k2179.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Monda V, Villano I, Messina A, Valenzano A, Esposito T, Moscatelli F, et al. Exercise modifies the gut microbiota with positive health effects. Oxid Med Cell Longev. 2017;2017:3831972.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Mach N, Fuster-Botella D. Endurance exercise and gut microbiota: A review. J Sport Health Sci. 2017;6(2):179–97.

    Article  PubMed  Google Scholar 

  115. Vich Vila A, Collij V, Sanna S, Sinha T, Imhann F, Bourgonje AR, et al. Impact of commonly used drugs on the composition and metabolic function of the gut microbiota. Nat Commun. 2020;11(1):362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. de Groot PF, Nikolic T, Imangaliyev S, Bekkering S, Duinkerken G, Keij FM, et al. Oral butyrate does not affect innate immunity and islet autoimmunity in individuals with longstanding type 1 diabetes: a randomised controlled trial. Diabetologia. 2020;63(3):597–610.

    Article  PubMed  CAS  Google Scholar 

  117. van Bommel EJM, Herrema H, Davids M, Kramer MHH, Nieuwdorp M, van Raalte DH. Effects of 12-week treatment with dapagliflozin and gliclazide on faecal microbiome: Results of a double-blind randomized trial in patients with type 2 diabetes. Diabetes Metab. 2020;46(2):164–8.

    Article  PubMed  CAS  Google Scholar 

  118. Frost F, Storck LJ, Kacprowski T, Gartner S, Ruhlemann M, Bang C, et al. A structured weight loss program increases gut microbiota phylogenetic diversity and reduces levels of Collinsella in obese type 2 diabetics: A pilot study. PLoS One. 2019;14(7):e0219489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Tong X, Xu J, Lian F, Yu X, Zhao Y, Xu L, et al. Structural alteration of gut microbiota during the amelioration of human type 2 diabetes with hyperlipidemia by metformin and a traditional chinese herbal formula: a multicenter, randomized, open label clinical trial. mBio. 2018;9(3).

  120. Sergeev IN, Aljutaily T, Walton G, Huarte E. Effects of synbiotic supplement on human gut microbiota, body composition and weight loss in obesity. Nutrients. 2020;12(1).

  121. Bornstein S, Moschetta M, Kawano Y, Sacco A, Huynh D, Brooks D, et al. Metformin affects cortical bone mass and marrow adiposity in diet-induced obesity in male mice. Endocrinology. 2017;158(10):3369–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zhang M, Feng R, Yang M, Qian C, Wang Z, Liu W, et al. Effects of metformin, acarbose, and sitagliptin monotherapy on gut microbiota in Zucker diabetic fatty rats. BMJ Open Diabetes Res Care. 2019;7(1):e000717.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Li Q, He R, Zhang F, Zhang J, Lian S, Liu H. Combination of oligofructose and metformin alters the gut microbiota and improves metabolic profiles, contributing to the potentiated therapeutic effects on diet-induced obese animals. Front Endocrinol (Lausanne). 2019;10:939.

    Article  Google Scholar 

  124. Wang H, Tang W, Zhang P, Zhang Z, He J, Zhu D, et al. Modulation of gut microbiota contributes to effects of intensive insulin therapy on intestinal morphological alteration in high-fat-diet-treated mice. Acta Diabetol. 2020;57(4):455–67.

    Article  CAS  PubMed  Google Scholar 

  125. Li L, Xu S, Guo T, Gong S, Zhang C. Effect of Dapagliflozin on Intestinal Flora in MafA-deficient Mice. Current pharmaceutical design. 2018;24(27):3223–31.

    Article  CAS  PubMed  Google Scholar 

  126. Madsen MSA, Holm JB, Palleja A, Wismann P, Fabricius K, Rigbolt K, et al. Metabolic and gut microbiome changes following GLP-1 or dual GLP-1/GLP-2 receptor agonist treatment in diet-induced obese mice. Sci Rep. 2019;9(1):15582.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Markowiak P, Slizewska K. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients. 2017;9(9).

  128. Kasinska MA, Drzewoski J. Effectiveness of probiotics in type 2 diabetes: a meta-analysis. Pol Arch Med Wewn. 2015;125(11):803–13.

    PubMed  Google Scholar 

  129. Bryrup T, Thomsen CW, Kern T, Allin KH, Brandslund I, Jorgensen NR, et al. Metformin-induced changes of the gut microbiota in healthy young men: results of a non-blinded, one-armed intervention study. Diabetologia. 2019;62(6):1024–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Elbere I, Kalnina I, Silamikelis I, Konrade I, Zaharenko L, Sekace K, et al. Association of metformin administration with gut microbiome dysbiosis in healthy volunteers. PLoS One. 2018;13(9):e0204317.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Lee H, Ko G. Effect of metformin on metabolic improvement and gut microbiota. Appl Environ Microbiol. 2014;80(19):5935–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Kyriachenko Y, Falalyeyeva T, Korotkyi O, Molochek N, Kobyliak N. Crosstalk between gut microbiota and antidiabetic drug action. World J Diabetes. 2019;10(3):154–68.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Tolosa MJ, Chuguransky SR, Sedlinsky C, Schurman L, McCarthy AD, Molinuevo MS, et al. Insulin-deficient diabetes-induced bone microarchitecture alterations are associated with a decrease in the osteogenic potential of bone marrow progenitor cells: preventive effects of metformin. Diabetes Res Clin Pract. 2013;101(2):177–86.

    Article  CAS  PubMed  Google Scholar 

  134. Rena G, Hardie DG, Pearson ER. The mechanisms of action of metformin. Diabetologia. 2017;60(9):1577–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Li Y, Su J, Sun W, Cai L, Deng Z. AMP-activated protein kinase stimulates osteoblast differentiation and mineralization through autophagy induction. Int J Mol Med. 2018;41(5):2535–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Shen L. Tight junctions on the move: molecular mechanisms for epithelial barrier regulation. Ann N Y Acad Sci. 2012;1258:9–18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Slyepchenko A, Maes M, Machado-Vieira R, Anderson G, Solmi M, Sanz Y, et al. intestinal dysbiosis, gut hyperpermeability and bacterial translocation: missing links between depression, obesity and type 2 diabetes. Curr Pharm Des. 2016;22(40):6087–106.

    Article  CAS  PubMed  Google Scholar 

  138. Sapone A, de Magistris L, Pietzak M, Clemente MG, Tripathi A, Cucca F, et al. Zonulin upregulation is associated with increased gut permeability in subjects with type 1 diabetes and their relatives. Diabetes. 2006;55(5):1443–9.

    Article  CAS  PubMed  Google Scholar 

  139. Jayashree B, Bibin YS, Prabhu D, Shanthirani CS, Gokulakrishnan K, Lakshmi BS, et al. Increased circulatory levels of lipopolysaccharide (LPS) and zonulin signify novel biomarkers of proinflammation in patients with type 2 diabetes. Mol Cell Biochem. 2014;388(1-2):203–10.

    Article  CAS  PubMed  Google Scholar 

  140. Li JY, Chassaing B, Tyagi AM, Vaccaro C, Luo T, Adams J, et al. Sex steroid deficiency-associated bone loss is microbiota dependent and prevented by probiotics. J Clin Invest. 2016;126(6):2049–63.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Zhou HY, Zhu H, Yao XM, Qian JP, Yang J, Pan XD, et al. Metformin regulates tight junction of intestinal epithelial cells via MLCK-MLC signaling pathway. Eur Rev Med Pharmacol Sci. 2017;21(22):5239–46.

    PubMed  Google Scholar 

  142. den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013;54(9):2325–40.

    Article  CAS  Google Scholar 

  143. Diao H, Jiao AR, Yu B, Mao XB, Chen DW. Gastric infusion of short-chain fatty acids can improve intestinal barrier function in weaned piglets. Genes Nutr. 2019;14:4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Raetz CR, Whitfield C. Lipopolysaccharide endotoxins. Annu Rev Biochem. 2002;71:635–700.

    Article  CAS  PubMed  Google Scholar 

  145. de Oliveira RB, Matheus VA, Canuto LP, De Sant'ana A, Collares-Buzato CB. Time-dependent alteration to the tight junction structure of distal intestinal epithelia in type 2 prediabetic mice. Life sciences. 2019;238:116971.

    Article  PubMed  CAS  Google Scholar 

  146. Eaimworawuthikul S, Tunapong W, Chunchai T, Suntornsaratoon P, Charoenphandhu N, Thiennimitr P, et al. Altered gut microbiota ameliorates bone pathology in the mandible of obese-insulin-resistant rats. Eur J Nutr. 2020;59(4):1453–62.

    Article  CAS  PubMed  Google Scholar 

  147. Wang Y, Dilidaxi D, Wu Y, Sailike J, Sun X, Nabi XH. Composite probiotics alleviate type 2 diabetes by regulating intestinal microbiota and inducing GLP-1 secretion in db/db mice. Biomed Pharmacother. 2020;125:109914.

    Article  CAS  PubMed  Google Scholar 

  148. Zhang W, Xu JH, Yu T, Chen QK. Effects of berberine and metformin on intestinal inflammation and gut microbiome composition in db/db mice. Biomed Pharmacother. 2019;118:109131.

    Article  CAS  PubMed  Google Scholar 

  149. Jia X, Jia L, Mo L, Yuan S, Zheng X, He J, et al. Berberine ameliorates periodontal bone loss by regulating gut microbiota. J Dent Res. 2019;98(1):107–16.

    Article  CAS  PubMed  Google Scholar 

  150. Schepper JD, Collins FL, Rios-Arce ND, Raehtz S, Schaefer L, Gardinier JD, et al. Probiotic lactobacillus reuteri prevents postantibiotic bone loss by reducing intestinal dysbiosis and preventing barrier disruption. J Bone Miner Res. 2019;34(4):681–98.

    Article  CAS  PubMed  Google Scholar 

  151. Chelakkot C, Ghim J, Ryu SH. Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp Mol Med. 2018;50(8):103.

    Article  PubMed Central  CAS  Google Scholar 

  152. Clark M, Kroger CJ, Tisch RM. Type 1 diabetes: a chronic anti-self-inflammatory response. Front Immunol. 2017;8:1898.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Odegaard JI, Chawla A. Connecting type 1 and type 2 diabetes through innate immunity. Cold Spring Harb Perspect Med. 2012;2(3):a007724.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Geerlings SE, Hoepelman AI. Immune dysfunction in patients with diabetes mellitus (DM). FEMS Immunol Med Microbiol. 1999;26(3-4):259–65.

    Article  CAS  PubMed  Google Scholar 

  155. Kolb H, Mandrup-Poulsen T. An immune origin of type 2 diabetes? Diabetologia. 2005;48(6):1038–50.

    Article  CAS  PubMed  Google Scholar 

  156. Clowes JA, Riggs BL, Khosla S. The role of the immune system in the pathophysiology of osteoporosis. Immunol Rev. 2005;208:207–27.

    Article  CAS  PubMed  Google Scholar 

  157. Haseeb A, Haqqi TM. Immunopathogenesis of osteoarthritis. Clin Immunol. 2013;146(3):185–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Leite JA, Pessenda G, Guerra-Gomes IC, de Santana AKM, Andre Pereira C, Ribeiro Campos Costa F, et al. The DNA sensor AIM2 protects against streptozotocin-induced type 1 diabetes by regulating intestinal homeostasis via the IL-18 pathway. Cells. 2020;9(4).

  159. Shimokawa C, Kato T, Takeuchi T, Ohshima N, Furuki T, Ohtsu Y, et al. CD8(+) regulatory T cells are critical in prevention of autoimmune-mediated diabetes. Nat Commun. 2020;11(1):1922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Yang C, Ouyang L, Wang W, Chen B, Liu W, Yuan X, et al. Sodium butyrate-modified sulfonated polyetheretherketone modulates macrophage behavior and shows enhanced antibacterial and osteogenic functions during implant-associated infections. J Mater Chem B. 2019;7(36):5541–53.

    Article  CAS  PubMed  Google Scholar 

  161. Pan H, Guo R, Ju Y, Wang Q, Zhu J, Xie Y, et al. A single bacterium restores the microbiome dysbiosis to protect bones from destruction in a rat model of rheumatoid arthritis. Microbiome. 2019;7(1):107.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Xiao E, Mattos M, Vieira GHA, Chen S, Correa JD, Wu Y, et al. Diabetes enhances IL-17 expression and alters the oral microbiome to increase its pathogenicity. Cell Host Microbe, Animal research study in which microbiota transfer from a diabetic mouse model into a control mouse induced both diabetic and osteoporotic features. 2017;22(1):120–8 e4.

  163. Sorini C, Cosorich I, Lo Conte M, De Giorgi L, Facciotti F, Luciano R, et al. Loss of gut barrier integrity triggers activation of islet-reactive T cells and autoimmune diabetes. Proc Natl Acad Sci U S A. 2019;116(30):15140–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Hathaway-Schrader JD, Steinkamp HM, Chavez MB, Poulides NA, Kirkpatrick JE, Chew ME, et al. Antibiotic perturbation of gut microbiota dysregulates osteoimmune cross talk in postpubertal skeletal development. Am J Pathol. 2019;189(2):370–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Kuehn F, Adiliaghdam F, Hamarneh SR, Vasan R, Liu E, Liu Y, et al. Loss of intestinal alkaline phosphatase leads to distinct chronic changes in bone phenotype. J Surg Res. 2018;232:325–31.

    Article  CAS  PubMed  Google Scholar 

  166. Pearson JA, Kakabadse D, Davies J, Peng J, Warden-Smith J, Cuff S, et al. Altered gut microbiota activate and expand insulin B15-23-reactive CD8+ T cells. Diabetes. 2019;68(5):1002–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Chan KL, Tam TH, Boroumand P, Prescott D, Costford SR, Escalante NK, et al. Circulating NOD1 activators and hematopoietic NOD1 contribute to metabolic inflammation and insulin resistance. Cell Rep. 2017;18(10):2415–26.

    Article  CAS  PubMed  Google Scholar 

  168. Ansalone C, Utriainen L, Milling S, Goodyear CS. Role of gut inflammation in altering the monocyte compartment and its osteoclastogenic potential in HLA-B27-transgenic rats. Arthritis Rheumatol. 2017;69(9):1807–15.

    Article  CAS  PubMed  Google Scholar 

  169. Guss JD, Taylor E, Rouse Z, Roubert S, Higgins CH, Thomas CJ, et al. The microbial metagenome and bone tissue composition in mice with microbiome-induced reductions in bone strength. Bone. 2019;127:146–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Novince CM, Whittow CR, Aartun JD, Hathaway JD, Poulides N, Chavez MB, et al. Commensal gut microbiota immunomodulatory actions in bone marrow and liver have catabolic effects on skeletal homeostasis in health. Sci Rep. 2017;7(1):5747.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Quach D, Collins F, Parameswaran N, McCabe L, Britton RA. Microbiota reconstitution does not cause bone loss in germ-free mice. mSphere. 2018;3(1).

  172. Guss JD, Ziemian SN, Luna M, Sandoval TN, Holyoak DT, Guisado GG, et al. The effects of metabolic syndrome, obesity, and the gut microbiome on load-induced osteoarthritis. Osteoarthritis Cartilage. 2019;27(1):129–39.

    Article  CAS  PubMed  Google Scholar 

  173. Vernocchi P, Del Chierico F, Putignani L. Gut microbiota profiling: metabolomics based approach to unravel compounds affecting human health. Front Microbiol. 2016;7:1144.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Johnson CH, Ivanisevic J, Siuzdak G. Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol. 2016;17(7):451–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Roder PV, Wu B, Liu Y, Han W. Pancreatic regulation of glucose homeostasis. Exp Mol Med. 2016;48:e219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Holz GG, Habener JF. Signal transduction crosstalk in the endocrine system: pancreatic beta-cells and the glucose competence concept. Trends Biochem Sci. 1992;17(10):388–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Han Y, You X, Xing W, Zhang Z, Zou W. Paracrine and endocrine actions of bone-the functions of secretory proteins from osteoblasts, osteocytes, and osteoclasts. Bone Res. 2018;6:16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Clarke BL, Khosla S. Physiology of bone loss. Radiol Clin North Am. 2010;48(3):483–95.

    Article  PubMed  PubMed Central  Google Scholar 

  179. Vitale DC, Piazza C, Melilli B, Drago F, Salomone S. Isoflavones: estrogenic activity, biological effect and bioavailability. Eur J Drug Metab Pharmacokinet. 2013;38(1):15–25.

    Article  CAS  PubMed  Google Scholar 

  180. Wei P, Liu M, Chen Y, Chen DC. Systematic review of soy isoflavone supplements on osteoporosis in women. Asian Pac J Trop Med. 2012;5(3):243–8.

    Article  CAS  PubMed  Google Scholar 

  181. Lambert MNT, Thybo CB, Lykkeboe S, Rasmussen LM, Frette X, Christensen LP, et al. Combined bioavailable isoflavones and probiotics improve bone status and estrogen metabolism in postmenopausal osteopenic women: a randomized controlled trial. Am J Clin Nutr. 2017;106(3):909–20.

    CAS  PubMed  Google Scholar 

  182. Lin X, Brennan-Speranza TC, Levinger I, Yeap BB. Undercarboxylated osteocalcin: experimental and human evidence for a role in glucose homeostasis and muscle regulation of insulin sensitivity. Nutrients. 2018;10(7).

  183. Kruger MC, Middlemiss C, Katsumata S, Tousen Y, Ishimi Y. The effects of green kiwifruit combined with isoflavones on equol production, bone turnover and gut microflora in healthy postmenopausal women. Asia Pac J Clin Nutr. 2018;27(2):347–58.

    CAS  PubMed  Google Scholar 

  184. Setchell KD, Clerici C, Lephart ED, Cole SJ, Heenan C, Castellani D, et al. S-equol, a potent ligand for estrogen receptor beta, is the exclusive enantiomeric form of the soy isoflavone metabolite produced by human intestinal bacterial flora. Am J Clin Nutr. 2005;81(5):1072–9.

    Article  CAS  PubMed  Google Scholar 

  185. Ko KP, Kim CS, Ahn Y, Park SJ, Kim YJ, Park JK, et al. Plasma isoflavone concentration is associated with decreased risk of type 2 diabetes in Korean women but not men: results from the Korean Genome and Epidemiology Study. Diabetologia. 2015;58(4):726–35.

    Article  CAS  PubMed  Google Scholar 

  186. Gilbert ER, Liu D. Anti-diabetic functions of soy isoflavone genistein: mechanisms underlying its effects on pancreatic beta-cell function. Food & Function. 2013;4(2):200–12.

    Article  CAS  Google Scholar 

  187. Park S, Kim DS, Kang ES, Kim DB, Kang S. Low-dose brain estrogen prevents menopausal syndrome while maintaining the diversity of the gut microbiomes in estrogen-deficient rats. Am J Physiol Endocrinol Metab. 2018;315(1):E99–E109.

    Article  CAS  PubMed  Google Scholar 

  188. De Leon DD, Crutchlow MF, Ham JY, Stoffers DA. Role of glucagon-like peptide-1 in the pathogenesis and treatment of diabetes mellitus. Int J Biochem Cell Biol. 2006;38(5-6):845–59.

    Article  PubMed  CAS  Google Scholar 

  189. Everard A, Cani PD. Gut microbiota and GLP-1. Rev Endocr Metab Disord. 2014;15(3):189–96.

    Article  CAS  PubMed  Google Scholar 

  190. Brighton CA, Rievaj J, Kuhre RE, Glass LL, Schoonjans K, Holst JJ, et al. Bile acids trigger GLP-1 release predominantly by accessing basolaterally located G protein-coupled bile acid receptors. Endocrinology. 2015;156(11):3961–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Zhao C, Liang J, Yang Y, Yu M, Qu X. The impact of glucagon-like peptide-1 on bone metabolism and its possible mechanisms. Front Endocrinol (Lausanne). 2017;8:98.

    Article  Google Scholar 

  192. Shen WR, Kimura K, Ishida M, Sugisawa H, Kishikawa A, Shima K, et al. The glucagon-like peptide-1 receptor agonist exendin-4 inhibits lipopolysaccharide-induced osteoclast formation and bone resorption via inhibition of TNF-alpha expression in macrophages. J Immunol Res. 2018;2018:5783639.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Zheng T, Kang JH, Sim JS, Kim JW, Koh JT, Shin CS, et al. The farnesoid X receptor negatively regulates osteoclastogenesis in bone remodeling and pathological bone loss. Oncotarget. 2017;8(44):76558–73.

    Article  PubMed  PubMed Central  Google Scholar 

  194. Sun L, Xie C, Wang G, Wu Y, Wu Q, Wang X, et al. Gut microbiota and intestinal FXR mediate the clinical benefits of metformin. Nat Med. 2018;24(12):1919–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

JKK performed the literature searches, extracted data and wrote the initial manuscript draft.

PL and SS formulated the manuscript idea, managed the project and reviewed the drafts.

All authors read and approved the final manuscript.

Corresponding author

Correspondence to Julie Kristine Knudsen.

Ethics declarations

Conflict of Interest

Julie Kristine Knudsen has nothing to declare.

Peter Leutscher has nothing to declare.

Suzette Sørensen has nothing to declare.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Bone and Diabetes

The original online version of this article was revised: The reference citations did not match with the reference list.

The original online version of this article was revised: The reference citations did not match with the reference list.

Electronic Supplementary Material

ESM 1

(DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knudsen, J.K., Leutscher, P. & Sørensen, S. Gut Microbiota in Bone Health and Diabetes. Curr Osteoporos Rep 19, 462–479 (2021). https://doi.org/10.1007/s11914-020-00629-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-020-00629-9

Keywords

Navigation