Skip to main content

Advertisement

Log in

Gut microbiota composition and bone mineral loss—epidemiologic evidence from individuals in Wuhan, China

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

We explored the association between gut microbiota composition and bone mineral loss in Chinese elderly people by high-throughput 16S ribosomal RNA (rRNA) gene sequencing. Compared with controls, a smaller number of operational taxonomic units (OTUs), several taxa with altered abundance, and specific functional pathways were found in individuals with low-bone mineral density (BMD).

Introduction

Gut microbiota plays important roles in human health and associates with a number of diseases. However, few studies explored its association with bone mineral loss in human.

Methods

We collected 102 fecal samples from each eligible individual belonging to low-BMD and control groups for high-throughput 16S rRNA gene sequencing.

Results

The low-BMD individuals had a smaller number of OTUs and bacterial taxa at each level. At the phylum level, Bacteroidetes were more abundant in the low-BMD group; Firmicutes were enriched in the control group; Firmicutes and Actinobacteria positively correlated and Bacteroidetes negatively correlated with the BMD and T-score in all subjects. At the family level, the abundance of Lachnospiraceae in low-BMD individuals reduced and positively correlated with BMD and T-score; meanwhile, BMD increased with increasing Bifidobacteriaceae. At the genus level, low-BMD individuals had decreased proportions of Roseburia compared with control ones (P < 0.05). Roseburia, Bifidobacterium, and Lactobacillus positively correlated with BMD and T-score. Furthermore, BMD increased with rising abundance of Bifidobacterium. Functional prediction revealed that 93 metabolic pathways significantly differed between the two groups (FDR-corrected P < 0.05). Most pathways, especially pathways related to LPS biosynthesis, were more abundant in low-BMD individuals than in control ones.

Conclusions

Several taxa with altered abundance and specific functional pathways were discovered in low-BMD individuals. Our findings provide novel epidemiologic evidence to elucidate the underlying microbiota-relevant mechanism in bone mineral loss and osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Park JS, Choi SB, Rhee Y, Chung JW, Choi EY, Kim DW (2015) Parathyroid hormone, calcium, and sodium bridging between osteoporosis and hypertension in postmenopausal Korean women. Calcified Tissue Int 96:417–429

    Article  CAS  Google Scholar 

  2. Gass M, Dawson-Hughes B (2006) Preventing osteoporosis-related fractures: an overview. Am J Med 119:S3–s11

    Article  PubMed  Google Scholar 

  3. Ilic K, Obradovic N, Vujasinovic-Stupar N (2013) The relationship among hypertension, antihypertensive medications, and osteoporosis: a narrative review. Calcified Tissue Int 92:217–227

    Article  CAS  Google Scholar 

  4. Chung HJ, Cho L, Shin JS, Lee J, Ha IH, Park HJ, Lee SK (2014) Effects of JSOG-6 on protection against bone loss in ovariectomized mice through regulation of osteoblast differentiation and osteoclast formation. BMC Complem Altern M 14:184

    Article  CAS  Google Scholar 

  5. Harada S, Rodan GA (2003) Control of osteoblast function and regulation of bone mass. Nature 423:349–355

    Article  CAS  PubMed  Google Scholar 

  6. Nieves JW, Barrett-Connor E, Siris ES, Zion M, Barlas S, Chen YT (2008) Calcium and vitamin D intake influence bone mass, but not short-term fracture risk, in Caucasian postmenopausal women from the National Osteoporosis Risk Assessment (NORA) study. Osteoporos Int 19:673–679

    Article  CAS  PubMed  Google Scholar 

  7. Warensjo E, Byberg L, Melhus H, Gedeborg R, Mallmin H, Wolk A, Michaelsson K (2011) Dietary calcium intake and risk of fracture and osteoporosis: prospective longitudinal cohort study. Bmj 342:d1473

    Article  PubMed  PubMed Central  Google Scholar 

  8. Pollitzer WS, Anderson JJ (1989) Ethnic and genetic differences in bone mass: a review with a hereditary vs environmental perspective. Am J Clin Nutr 50:1244–1259

    Article  CAS  PubMed  Google Scholar 

  9. Boudin E, Fijalkowski I, Hendrickx G, Van Hul W (2016) Genetic control of bone mass. Mol Cell Endocrinol 432:3–13

    Article  CAS  PubMed  Google Scholar 

  10. Sjogren K, Engdahl C, Henning P, Lerner UH, Tremaroli V, Lagerquist MK, Backhed F, Ohlsson C (2012) The gut microbiota regulates bone mass in mice. J Bone Miner Res 27:1357–1367

    Article  CAS  PubMed  Google Scholar 

  11. Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, Schlegel ML, Tucker TA, Schrenzel MD, Knight R, Gordon JI (2008) Evolution of mammals and their gut microbes. Science 320:1647–1651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Weaver CM (2015) Diet, gut microbiome, and bone health. Curr Osteoporos Rep 13:125–130

    Article  PubMed  PubMed Central  Google Scholar 

  13. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI (2007) The human microbiome project. Nature 449:804–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nagpal R, Yadav H, Marotta F (2014) Gut microbiota: the next-gen frontier in preventive and therapeutic medicine? Front Med 1:15

    Article  Google Scholar 

  15. Hernandez CJ, Guss JD, Luna M, Goldring SR (2016) Links between the microbiome and bone. J Bone Miner Res 31:1638–1646

    Article  PubMed  Google Scholar 

  16. Yan J, Herzog JW, Tsang K, Brennan CA, Bower MA, Garrett WS, Sartor BR, Aliprantis AO, Charles JF (2016) Gut microbiota induce IGF-1 and promote bone formation and growth. P Natl Acad Sci USA 113:E7554–E7563

    Article  CAS  Google Scholar 

  17. McCabe L, Britton RA, Parameswaran N (2015) Prebiotic and probiotic regulation of bone health: role of the intestine and its microbiome. Curr Osteoporos Rep 13:363–371

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wang J, Wang Y, Gao W, Wang B, Zhao H, Zeng Y, Ji Y, Hao D (2017) Diversity analysis of gut microbiota in osteoporosis and osteopenia patients. PeerJ 5:e3450

    Article  PubMed  PubMed Central  Google Scholar 

  19. Expert Panel on Musculoskeletal I, Ward RJ, Roberts CC et al (2017) ACR Appropriateness Criteria® osteoporosis and bone mineral density. J Am Coll Radiol 14:S189–S202

    Article  Google Scholar 

  20. Qian J, Cai M, Gao J, Tang S, Xu L, Critchley JA (2010) Trends in smoking and quitting in China from 1993 to 2003: National Health Service Survey data. B World Health Organ 88:769–776

    Article  Google Scholar 

  21. Fugmann M, Breier M, Rottenkolber M, Banning F, Ferrari U, Sacco V, Grallert H, Parhofer KG, Seissler J, Clavel T, Lechner A (2015) The stool microbiota of insulin resistant women with recent gestational diabetes, a high risk group for type 2 diabetes. Sci Rep 5:13212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mejia-Leon ME, Petrosino JF, Ajami NJ, Dominguez-Bello MG, de la Barca AM (2014) Fecal microbiota imbalance in Mexican children with type 1 diabetes. Sci Rep 4:3814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. de Vlaming R, Groenen PJ (2015) The current and future use of ridge regression for prediction in quantitative genetics. Biomed Res Int 2015:143712

    Article  PubMed  PubMed Central  Google Scholar 

  24. Cule E, De Iorio M (2013) Ridge regression in prediction problems: automatic choice of the ridge parameter. Genet Epidemiol 37:704–714

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sharon G, Garg N, Debelius J, Knight R, Dorrestein PC, Mazmanian SK (2014) Specialized metabolites from the microbiome in health and disease. Cell Metab 20:719–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly YM, Glickman JN, Garrett WS (2013) The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341:569–573

    Article  CAS  PubMed  Google Scholar 

  27. Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, deRoos P, Liu H, Cross JR, Pfeffer K, Coffer PJ, Rudensky AY (2013) Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504:451–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, Nakanishi Y, Uetake C, Kato K, Kato T, Takahashi M, Fukuda NN, Murakami S, Miyauchi E, Hino S, Atarashi K, Onawa S, Fujimura Y, Lockett T, Clarke JM, Topping DL, Tomita M, Hori S, Ohara O, Morita T, Koseki H, Kikuchi J, Honda K, Hase K, Ohno H (2013) Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504:446–450

    Article  CAS  PubMed  Google Scholar 

  29. Singh N, Gurav A, Sivaprakasam S, Brady E, Padia R, Shi H, Thangaraju M, Prasad PD, Manicassamy S, Munn DH, Lee JR, Offermanns S, Ganapathy V (2014) Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 40:128–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Aurigemma NC, Koltun KJ, VanEvery H, Rogers CJ, De Souza MJ (2018) Linking the gut microbiota to bone health in anorexia nervosa. Curr Osteoporos Rep 16:65–75

    Article  PubMed  Google Scholar 

  31. Li JY, Chassaing B, Tyagi AM, Vaccaro C, Luo T, Adams J, Darby TM, Weitzmann MN, Mulle JG, Gewirtz AT, Jones RM, Pacifici R (2016) Sex steroid deficiency-associated bone loss is microbiota dependent and prevented by probiotics. J Clin Invest 126:2049–2063

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ohlsson C, Engdahl C, Fak F, Andersson A, Windahl SH, Farman HH, Moverare-Skrtic S, Islander U, Sjogren K (2014) Probiotics protect mice from ovariectomy-induced cortical bone loss. PLoS One 9:e92368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Britton RA, Irwin R, Quach D, Schaefer L, Zhang J, Lee T, Parameswaran N, McCabe LR (2014) Probiotic L. reuteri treatment prevents bone loss in a menopausal ovariectomized mouse model. J Cell Physiol 229:1822–1830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tilg H, Moschen AR, Kaser A, Pines A, Dotan I (2008) Gut, inflammation and osteoporosis: basic and clinical concepts. Gut 57:684–694

    Article  CAS  PubMed  Google Scholar 

  35. Harris L, Senagore P, Young VB, McCabe LR (2009) Inflammatory bowel disease causes reversible suppression of osteoblast and chondrocyte function in mice. Am J Physiol- Gastr L 296:G1020–G1029

    Article  CAS  Google Scholar 

  36. McCabe LR, Irwin R, Schaefer L, Britton RA (2013) Probiotic use decreases intestinal inflammation and increases bone density in healthy male but not female mice. J Cell Physiol 228:1793–1798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kimble RB, Bain S, Pacifici R (1997) The functional block of TNF but not of IL-6 prevents bone loss in ovariectomized mice. J Bone Miner Res 12:935–941

    Article  CAS  PubMed  Google Scholar 

  38. Charatcharoenwitthaya N, Khosla S, Atkinson EJ, McCready LK, Riggs BL (2007) Effect of blockade of TNF-alpha and interleukin-1 action on bone resorption in early postmenopausal women. J Bone Miner Res 22:724–729

    Article  CAS  PubMed  Google Scholar 

  39. Pinzone MR, Celesia BM, Di Rosa M, Cacopardo B, Nunnari G (2012) Microbial translocation in chronic liver diseases. Int J Microbiol 2012:694629

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kohn FR, Kung AH (1995) Role of endotoxin in acute inflammation induced by gram-negative bacteria: specific inhibition of lipopolysaccharide-mediated responses with an amino-terminal fragment of bactericidal/permeability-increasing protein. Infect Immun 63:333–339

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Cybulsky MI, Chan MK, Movat HZ (1988) Acute inflammation and microthrombosis induced by endotoxin, interleukin-1, and tumor necrosis factor and their implication in gram-negative infection. Lab Investig 58:365–378

    CAS  PubMed  Google Scholar 

  42. Schwarzer M, Makki K, Storelli G, Machuca-Gayet I, Srutkova D, Hermanova P, Martino ME, Balmand S, Hudcovic T, Heddi A, Rieusset J, Kozakova H, Vidal H, Leulier F (2016) Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition. Science 351:854–857

    Article  CAS  PubMed  Google Scholar 

  43. von Martels JZH, Sadaghian Sadabad M, Bourgonje AR, Blokzijl T, Dijkstra G, Faber KN, Harmsen HJM (2017) The role of gut microbiota in health and disease: in vitro modeling of host-microbe interactions at the aerobe-anaerobe interphase of the human gut. Anaerobe 44:3–12

    Article  Google Scholar 

  44. Misiorowski W (2017) Osteoporosis in men. Prz Menopauzalny 16:70–73

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

The work was funded by the National Natural Science Foundation of China [Grant no. 81573235].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. Wang.

Ethics declarations

Conflicts of interest

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 92 kb)

ESM 2

(PDF 770 kb)

ESM 3

(PDF 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Huang, Q., Yang, R. et al. Gut microbiota composition and bone mineral loss—epidemiologic evidence from individuals in Wuhan, China. Osteoporos Int 30, 1003–1013 (2019). https://doi.org/10.1007/s00198-019-04855-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-019-04855-5

Keywords

Navigation