Tomes J, De Morgan CG. IV. Observations on the structure and development of bone. Philos Trans R Soc Lond. 1853;143:109–39.
Article
Google Scholar
• Bonewald LF. The amazing osteocyte. J Bone Miner Res. 2011;26(2):229–38 Still an excellent starting point to learn about the biology and function of osteocytes
.
CAS
Article
Google Scholar
• Schaffler MB, Cheung WY, Majeska R, Kennedy O. Osteocytes: Master orchestrators of bone. Calcif Tissue Int. 2014;94(1):5–24 Provides an excellent overview over osteocytes’ role in mechanotransduction
.
CAS
Article
Google Scholar
Bonewald LF. Osteocytes as dynamic multifunctional cells. Ann N Y Acad Sci. 2007;1116:281–90.
CAS
Article
Google Scholar
Hamrick MW. Leptin, bone mass, and the thrifty phenotype. J Bone Miner Res. 2004;19(10):1607–11.
CAS
Article
Google Scholar
Fruehauf HO. The five organ networks of Chinese medicine. Portland: National College of Naturopathic Medicine; 1997.
Google Scholar
Moester M, Papapoulos S, Löwik C, Van Bezooijen R. Sclerostin: current knowledge and future perspectives. Calcif Tissue Int. 2010;87(2):99–107.
CAS
Article
Google Scholar
Jacobs CR, Temiyasathit S, Castillo AB. Osteocyte mechanobiology and pericellular mechanics. Annu Rev Biomed Eng. 2010;12:369–400.
CAS
Article
Google Scholar
• Buenzli PR, Sims NA. Quantifying the osteocyte network in the human skeleton. Bone. 2015;75:144–50 Review that provides a lot of useful values characterizing the lacunocanalicular network
.
CAS
Article
Google Scholar
Cardoso L, Fritton SP, Gailani G, Benalla M, Cowin SC. Advances in assessment of bone porosity, permeability and interstitial fluid flow. J Biomech. 2013;46(2):253–65.
Article
Google Scholar
• Schneider P, Meier M, Wepf R, Muller R. Towards quantitative 3D imaging of the osteocyte lacuno-canalicular network. Bone. 2010;47(5):848–58 Introduces with FIB/SEM an important new 3D imaging technique to study the LCN
.
Article
Google Scholar
Repp F, Kollmannsberger P, Roschger A, Berzlanovich A, Gruber GM, Roschger P, et al. Coalignment of osteocyte canaliculi and collagen fibers in human osteonal bone. J Struct Biol. 2017;199(3):177–86.
CAS
Article
Google Scholar
Reznikov N, Shahar R, Weiner S. Three-dimensional structure of human lamellar bone: the presence of two different materials and new insights into the hierarchical organization. Bone. 2014;59:93–104.
CAS
Article
Google Scholar
• Hesse B, Varga P, Langer M, Pacureanu A, Schrof S, Mannicke N, et al. Canalicular network morphology is the major determinant of the spatial distribution of mass density in human bone tissue: evidence by means of synchrotron radiation phase-contrast nano-CT. J Bone Miner Res. 2015;30(2):346–56 State-of-the-art synchrotron tomography shows increased mineral content around canaliculi
.
CAS
Article
Google Scholar
• Kerschnitzki M, Wagermaier W, Roschger P, Seto J, Shahar R, Duda GN, et al. The organization of the osteocyte network mirrors the extracellular matrix orientation in bone. J Struct Biol. 2011;173(2):303–11 The study shows the interaction between LCN architecture and the surrounding bone matrix
.
CAS
Article
Google Scholar
Belanger LF. Osteocytic osteolysis. Calcif Tissue Res. 1969;4(1):1-&.
Article
Google Scholar
Tsourdi E, Jähn K, Rauner M, Busse B, Bonewald LF. Physiological and pathological osteocytic osteolysis. J Musculoskelet Neuronal Interact. 2018;18(3):292–303.
PubMed
PubMed Central
Google Scholar
Kerschnitzki M, Kollmannsberger P, Burghammer M, Duda GN, Weinkamer R, Wagermaier W, et al. Architecture of the osteocyte network correlates with bone material quality. J Bone Miner Res. 2013;28(8):1837–45.
CAS
Article
Google Scholar
• Repp F, Kollmannsberger P, Roschger A, Kerschnitzki M, Berzlanovich A, Gruber G, et al. Spatial heterogeneity in the canalicular density of the osteocyte network in human osteons. Bone Rep. 2017;6:101–8 Provides reference values for the LCN properties in healthy osteonal bone
.
Article
Google Scholar
Nango N, Kubota S, Hasegawa T, Yashiro W, Momose A, Matsuo K. Osteocyte-directed bone demineralization along canaliculi. Bone. 2016;84:279–88.
CAS
Article
Google Scholar
Burger EH, Klein-Nulend J. Mechanotransduction in bone—role of the lacuno-canalicular network. FASEB J. 1999;13(9001):S101–S12.
CAS
Article
Google Scholar
Cowin SC, Moss ML. Mechanosensory mechanisms in bone. In: Cowin SC, editor. Bone mechanics handbook. 2nd ed. Boca Raton: CRC Press; 2001.
Chapter
Google Scholar
Thi MM, Suadicani SO, Schaffler MB, Weinbaum S, Spray DC. Mechanosensory responses of osteocytes to physiological forces occur along processes and not cell body and require αVβ3 integrin. Proc Natl Acad Sci. 2013;110(52):21012–7.
CAS
Article
Google Scholar
Verbruggen SW, Vaughan TJ, McNamara LM. Fluid flow in the osteocyte mechanical environment: a fluid–structure interaction approach. Biomech Model Mechanobiol. 2014;13(1):85–97.
Article
Google Scholar
Wang YL, McNamara LM, Schaffler MB, Weinbaum S. A model for the role of integrins in flow induced mechanotransduction in osteocytes. Proc Natl Acad Sci U S A. 2007;104(40):15941–6.
CAS
Article
Google Scholar
• Turner C, Robling A, Duncan R, Burr D. Do bone cells behave like a neuronal network? Calcif Tissue Int. 2002;70(6):435–42 Early but still interesting work that discusses experimental evidence for memory-like mechanisms in the osteocyte network.
CAS
Article
Google Scholar
•• Meinertzhagen IA. Of what use is connectomics? A personal perspective on the Drosophila connectome. J Exp Biol. 2018;221(10):jeb164954 Nice overview article on the history, current state, and future perspective of connectomics in the
Drosophila
brain from one of the pioneers in the field.
Article
Google Scholar
Helmstaedter MJ. Connectomics at cellular precision. e-Neuroforum. 2016;22(3):45–7.
Article
Google Scholar
Oh SW, Harris JA, Ng L, Winslow B, Cain N, Mihalas S, et al. A mesoscale connectome of the mouse brain. Nature. 2014;508(7495):207.
CAS
Article
Google Scholar
Hildebrand DGC, Cicconet M, Torres RM, Choi W, Quan TM, Moon J, et al. Whole-brain serial-section electron microscopy in larval zebrafish. Nature. 2017;545(7654):345.
CAS
Article
Google Scholar
• Eichler K, Li F, Litwin-Kumar A, Park Y, Andrade I, Schneider-Mizell CM, et al. The complete connectome of a learning and memory centre in an insect brain. Nature. 2017;548(7666):175 The first complete wiring diagram of a higher-order circuit at synaptic resolution, the
Drosophila larval
mushroom body, obtained by a large collaboration over many years.
CAS
Article
Google Scholar
• Yan G, Vértes PE, Towlson EK, Chew YL, Walker DS, Schafer WR, et al. Network control principles predict neuron function in the Caenorhabditis elegans connectome. Nature. 2017;550(7677):519–23 Example of how connectomics can be applied to predict neuronal function for locomotion in
C. elegans
worms using control theory.
CAS
Article
Google Scholar
Bezares-Calderon LA, Berger J, Jasek S, Veraszto C, Mendes S, Guehmann M, et al. Neural circuitry of a polycystin-mediated hydrodynamic startle response for predator avoidance. eLife. 2018;7:e36262.
Article
Google Scholar
Svara FN, Kornfeld J, Denk W, Bollmann JH. Volume EM reconstruction of spinal cord reveals wiring specificity in speed-related motor circuits. Cell Rep. 2018;23(10):2942–54.
CAS
Article
Google Scholar
Wanner AA, Genoud C, Masudi T, Siksou L, Friedrich RW. Dense EM-based reconstruction of the interglomerular projectome in the zebrafish olfactory bulb. Nat Neurosci. 2016;19(6):816–25.
CAS
Article
Google Scholar
Scheffer LK. Analysis tools for large connectomes. Front Neural Circuits. 2018;12.
Fenno L, Yizhar O, Deisseroth K. The development and application of optogenetics. Annu Rev Neurosci. 2011;34:389–412.
CAS
Article
Google Scholar
• Webster DJ, Schneider P, Dallas SL, Müller R. Studying osteocytes within their environment. Bone. 2013;54(2):285–95 Clear review about imaging techniques of the osteocyte and lacunocanalicular network.
CAS
Article
Google Scholar
Okada S, Yoshida S, Ashrafi SH, Schraufnagel DE. The canalicular structure of compact bone in the rat at different ages. Microsc Microanal. 2002;8(2):104–15.
CAS
Article
Google Scholar
Lin Y, Xu S. AFM analysis of the lacunar-canalicular network in demineralized compact bone. J Microsc. 2011;241(3):291–302.
CAS
Article
Google Scholar
Dong P, Haupert S, Hesse B, Langer M, Gouttenoire PJ, Bousson V, et al. 3D osteocyte lacunar morphometric properties and distributions in human femoral cortical bone using synchrotron radiation micro-CT images. Bone. 2014;60:172–85.
Article
Google Scholar
Kamioka H, Murshid SA, Ishihara Y, Kajimura N, Hasegawa T, Ando R, et al. A method for observing silver-stained osteocytes in situ in 3-μm sections using ultra-high voltage electron microscopy tomography. Microsc Microanal. 2009;15(5):377–83.
CAS
Article
Google Scholar
Langer M, Peyrin F. 3D X-ray ultra-microscopy of bone tissue. Osteoporos Int. 2016;27(2):441–55.
CAS
Article
Google Scholar
Goggin P, Zygalakis K, Oreffo R, Schneider P. High-resolution 3D imaging of osteocytes and computational modelling in mechanobiology: insights on bone development, ageing, health and disease. Eur Cell Mater. 2016;31:264–95.
CAS
Article
Google Scholar
Varga P, Hesse B, Langer M, Schrof S, Mannicke N, Suhonen H, et al. Synchrotron X-ray phase nano-tomography-based analysis of the lacunar-canalicular network morphology and its relation to the strains experienced by osteocytes in situ as predicted by case-specific finite element analysis. Biomech Model Mechanobiol. 2015;14(2):267–82.
Article
Google Scholar
Ciani A, Toumi H, Pallu S, Tsai EH, Diaz A, Guizar-Sicairos M, et al. Ptychographic X-ray CT characterization of the osteocyte lacuno-canalicular network in a male rat’s glucocorticoid induced osteoporosis model. Bone Rep. 2018;9:122–31.
Article
Google Scholar
Schneider P, Meier M, Wepf R, Muller R. Serial FIB/SEM imaging for quantitative 3D assessment of the osteocyte lacuno-canalicular network. Bone. 2011;49(2):304–11.
Article
Google Scholar
• Kamel-ElSayed SA, Tiede-Lewis LM, Lu Y, Veno PA, Dallas SL. Novel approaches for two and three dimensional multiplexed imaging of osteocytes. Bone. 2015;76:129–40 Important technical paper that shows possibilities to study the interplay between the LCN and ON by imaging both in the same bone sample.
CAS
Article
Google Scholar
• Genthial R, Beaurepaire E, Schanne-Klein M-C, Peyrin F, Farlay D, Olivier C, et al. Label-free imaging of bone multiscale porosity and interfaces using third-harmonic generation microscopy. Sci Rep. 2017;7(1):3419 Demonstrates how nonlinear optics can be used to image the LCN without labeling
.
Article
Google Scholar
Tokarz D, Cisek R, Wein MN, Turcotte R, Haase C, S-CA Y, et al. Intravital imaging of osteocytes in mouse calvaria using third harmonic generation microscopy. PLoS One. 2017;12(10):e0186846.
Article
Google Scholar
Wu P-C, Shen Y-F, Sun C-K, Lin CP, Liu T-M. Harmonic generation microscopy of bone microenvironment in vivo. Opt Commun. 2018;422:52–5.
CAS
Article
Google Scholar
Heveran CM, Rauff A, King KB, Carpenter RD, Ferguson VL. A new open-source tool for measuring 3D osteocyte lacunar geometries from confocal laser scanning microscopy reveals age-related changes to lacunar size and shape in cortical mouse bone. Bone. 2018;110:115–27.
Article
Google Scholar
Mader KS, Schneider P, Muller R, Stampanoni M. A quantitative framework for the 3D characterization of the osteocyte lacunar system. Bone. 2013;57(1):142–54.
Article
Google Scholar
Cooper DM, Turinsky AL, Sensen CW, Hallgrímsson B. Quantitative 3D analysis of the canal network in cortical bone by micro-computed tomography. Anat Rec B New Anat. 2003;274(1):169–79.
CAS
Article
Google Scholar
Sharma D, Ciani C, Marin PAR, Levy JD, Doty SB, Fritton SP. Alterations in the osteocyte lacunar–canalicular microenvironment due to estrogen deficiency. Bone. 2012;51(3):488–97.
CAS
Article
Google Scholar
Ashique A, Hart L, Thomas C, Clement J, Pivonka P, Carter Y, et al. Lacunar-canalicular network in femoral cortical bone is reduced in aged women and is predominantly due to a loss of canalicular porosity. Bone Rep. 2017;7:9–16.
CAS
Article
Google Scholar
Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, et al. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60–88.
Article
Google Scholar
Acciai L, Soda P, Iannello G. Automated neuron tracing methods: an updated account. Neuroinformatics. 2016;14(4):353–67.
Article
Google Scholar
Nunez-Iglesias J, Blanch AJ, Looker O, Dixon MW, Tilley L. A new Python library to analyse skeleton images confirms malaria parasite remodelling of the red blood cell membrane skeleton. PeerJ. 2018;6:e4312.
Article
Google Scholar
Kaiser M. A tutorial in connectome analysis: topological and spatial features of brain networks. Neuroimage. 2011;57(3):892–907.
Article
Google Scholar
•• Kollmannsberger P, Kerschnitzki M, Repp F, Wagermaier W, Weinkamer R, Fratzl P. The small world of osteocytes: connectomics of the lacuno-canalicular network in bone. New J Phys. 2017;19:073019 Proves the potential of a connectomic approach by analyzing ovine lamellar bone and murine woven bone.
Article
Google Scholar
Clauset A, Tucker E, Sainz M. The Colorado index of complex networks. https://iconcolorado.edu/. 2016.
Barthélemy MJPR. Spatial networks. 2011;499(1–3):1-101.
Google Scholar
Tate MK, Tami A, Bauer T, Knothe U. Micropathoanatomy of osteoporosis: indications for a cellular basis of bone disease. Adv Osteopor Fract Manage. 2002;2(1):9–14.
Google Scholar
Tate MLK, Adamson JR, Tami AE, Bauer TW. The osteocyte. Int J Biochem Cell Biol. 2004;36(1):1–8.
Article
Google Scholar
Lai X, Price C, Modla S, Thompson WR, Caplan J, Kirn-Safran CB, et al. The dependences of osteocyte network on bone compartment, age, and disease. Bone Res. 2015;3:15009.
CAS
Article
Google Scholar
Mabilleau G, Perrot R, Flatt PR, Irwin N, Chappard D. High fat-fed diabetic mice present with profound alterations of the osteocyte network. Bone. 2016;90:99–106.
CAS
Article
Google Scholar
Hemmatian H, Bakker AD, Klein-Nulend J, van Lenthe GH. Aging, osteocytes, and mechanotransduction. Current Osteoporos Rep. 2017;15(5):401–11.
Article
Google Scholar
Razi H, Birkhold AI, Weinkamer R, Duda GN, Willie BM, Checa S. Aging leads to a dysregulation in mechanically driven bone formation and resorption. J Bone Miner Res. 2015;30(10):1864–73.
Article
Google Scholar
•• Tiede-Lewis LM, Xie Y, Hulbert MA, Campos R, Dallas MR, Dusevich V, et al. Degeneration of the osteocyte network in the C57BL/6 mouse model of aging. Aging (Albany NY). 2017;9(10):2190–208 An impressive study on the effect of age on both the LCN and ON in mice.
CAS
Article
Google Scholar
Frost HM. Micropetrosis. J Bone Joint Surg Am. 1960;42(1):144–50.
Article
Google Scholar
Sugawara Y, Kamioka H, Ishihara Y, Fujisawa N, Kawanabe N, Yamashiro T. The early mouse 3D osteocyte network in the presence and absence of mechanical loading. Bone. 2013;52(1):189–96.
Article
Google Scholar
Masic A, Bertinetti L, Schuetz R, Chang S-W, Metzger TH, Buehler MJ, et al. Osmotic pressure induced tensile forces in tendon collagen. Nat Commun. 2015;6:5942.
CAS
Article
Google Scholar
Kaiser M. Mechanisms of connectome development. Trends Cogn Sci. 2017;21(9):703–17.
Article
Google Scholar
Taylor-King JP, Basanta D, Chapman SJ, Porter MA. Mean-field approach to evolving spatial networks, with an application to osteocyte network formation. Phys Rev E. 2017;96(1):012301.
Article
Google Scholar
Gururaja S, Kim H, Swan C, Brand R, Lakes R. Modeling deformation-induced fluid flow in cortical bone’s canalicular–lacunar system. Ann Biomed Eng. 2005;33(1):7–25.
CAS
Article
Google Scholar
Anderson EJ, Kreuzer SM, Small O, Tate MLK. Pairing computational and scaled physical models to determine permeability as a measure of cellular communication in micro-and nano-scale pericellular spaces. Microfluid Nanofluid. 2008;4(3):193–204.
Article
Google Scholar
Mishra S, Tate MLK. Effect of lacunocanalicular architecture on hydraulic conductance in bone tissue: implications for bone health and evolution. Anat Rec A Discov Mol Cell Evol Biol. 2003;273a(2):752–62.
Article
Google Scholar
Veno P, Nicolella D, Sivakumar P, Kalajzic I, Rowe D, Bonewald L et al., editors. Live imaging of osteocytes within their lacunae reveals cell body and dendrite motions. J Bone Miner Res; 2006.