Skip to main content
Log in

3D X-ray ultra-microscopy of bone tissue

  • Review
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

We review the current X-ray techniques with 3D imaging capability at the nano-scale: transmission X-ray microscopy, ptychography and in-line phase nano-tomography. We further review the different ultra-structural features that have so far been resolved: the lacuno-canalicular network, collagen orientation, nano-scale mineralization and their use as basis for mechanical simulations. X-ray computed tomography at the micro-metric scale is increasingly considered as the reference technique in imaging of bone micro-structure. The trend has been to push towards increasingly higher resolution. Due to the difficulty of realizing optics in the hard X-ray regime, the magnification has mainly been due to the use of visible light optics and indirect detection of the X-rays, which limits the attainable resolution with respect to the wavelength of the visible light used in detection. Recent developments in X-ray optics and instrumentation have allowed to implement several types of methods that achieve imaging that is limited in resolution by the X-ray wavelength, thus enabling computed tomography at the nano-scale. We review here the X-ray techniques with 3D imaging capability at the nano-scale: transmission X-ray microscopy, ptychography and in-line phase nano-tomography. Further, we review the different ultra-structural features that have so far been resolved and the applications that have been reported: imaging of the lacuno-canalicular network, direct analysis of collagen orientation, analysis of mineralization on the nano-scale and use of 3D images at the nano-scale to drive mechanical simulations. Finally, we discuss the issue of going beyond qualitative description to quantification of ultra-structural features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Röntgen WC (1896) On a new kind of rays. Nature 53:274–277

    Google Scholar 

  2. Hounsfield GN (1972) A method of and and apparatus for examination of a body by radiation such as X-ray or gamma radiation. http://www.google.com/patents/US3944833. Accessed 13 Aug 2015

  3. Cormack AM (1963) Representation of a function by its line integrals, with some radiological applications. J Appl Phys 34:2722

    Article  Google Scholar 

  4. Bonse U (2002) Developments in X-ray tomography II. In: Proc. of SPIE Vol. 4503. SPIE

  5. Engelke K, Karolczak M, Lutz A, Seibert U, Schaller S, Kalender W (1999) Micro-CT. Technology and application for assessing bone structure. Radiologe 39(3):203–212

    Article  CAS  PubMed  Google Scholar 

  6. Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Müller R (2010) Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res 25(7):1468–1486. doi:10.1002/jbmr.141

    Article  PubMed  Google Scholar 

  7. Hildebrand T, Laib A, Müller R, Dequeker J, Rüegsegger P (1999) Direct three-dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest, and calcaneus. J Bone Miner Res 14(7):1167–1174. doi:10.1359/jbmr.1999.14.7.1167

    Article  CAS  PubMed  Google Scholar 

  8. Salomé M, Peyrin F, Cloetens P et al (1999) A synchrotron radiation microtomography system for the analysis of trabecular bone samples. Med Phys 26(10):2194. doi:10.1118/1.598736

    Article  PubMed  Google Scholar 

  9. Nuzzo S, Peyrin F, Cloetens P, Baruchel J, Boivin G (2002) Quantification of the degree of mineralization of bone in three dimensions using synchrotron radiation microtomography. Med Phys 29:2672–2681. doi:10.1118/1.1513161

    Article  PubMed  Google Scholar 

  10. Marinescu M, Langer M, Durand A, Olivier C, Chabrol A, Rositi H, Chauveau F, Cho TH, Nighoghossian N, Berthezène Y, Peyrin F, Wiart M (2013) Synchrotron radiation X-ray phase micro-computed tomography as a new method to detect iron oxide nanoparticles in the brain. Mol Imaging Biol.15(5):552-559. doi:10.1007/s11307-013-0639-6

  11. Boutroy S, Bouxsein ML, Munoz F, Delmas PD (2005) In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab 90(12):6508–6515. doi:10.1210/jc.2005-1258

    Article  CAS  PubMed  Google Scholar 

  12. Burghardt AJ, Pialat J-B, Kazakia GJ et al (2013) Multicenter precision of cortical and trabecular bone quality measures assessed by high-resolution peripheral quantitative computed tomography. J Bone Miner Res 28(3):524–536. doi:10.1002/jbmr.1795

    Article  PubMed Central  PubMed  Google Scholar 

  13. Seeman E, Delmas PD (2006) Bone quality--the material and structural basis of bone strength and fragility. N Engl J Med 354(21):2250–2261. doi:10.1056/NEJMra053077

    Article  CAS  PubMed  Google Scholar 

  14. Nijweide PJ, Burger EH, Klein Nulend J (2002). The Osteocyte. In Bilezikian JP, Raisz LG, Rodan GA (eds.) Principles of Bone Biology, second edition, vol. 1. Academic Press, San Diego, CA, USA, p 93--108

  15. Knothe Tate ML, Adamson JR, Tami AE, Bauer TW (2004) The osteocyte. Int J Biochem Cell Biol 36(1):1–8

    Article  CAS  PubMed  Google Scholar 

  16. Klein-Nulend J, Bacabac RG, Mullender MG (2005) Mechanobiology of bone tissue. Pathol Biol (Paris) 53(10):576–580. doi:10.1016/j.patbio.2004.12.005

    Article  CAS  Google Scholar 

  17. Bonewald LF (2006) Mechanosensation and Transduction in Osteocytes. Bonekey Osteovision 3(10):7–15. doi:10.1138/20060233

    Article  PubMed Central  PubMed  Google Scholar 

  18. Burger EH, Klein-Nulend J (1999) Mechanotransduction in bone--role of the lacuno-canalicular network. FASEB J 13(Suppl):S101–S112

    CAS  PubMed  Google Scholar 

  19. Hazenberg JG, Freeley M, Foran E, Lee TC, Taylor D (2006) Microdamage: a cell transducing mechanism based on ruptured osteocyte processes. J Biomech 39(11):2096–2103. doi:10.1016/j.jbiomech.2005.06.006

    Article  PubMed  Google Scholar 

  20. Taylor D, Hazenberg JG, Lee TC (2007) Living with cracks: damage and repair in human bone. Nat Mater 6(4):263–268. doi:10.1038/nmat1866

    Article  CAS  PubMed  Google Scholar 

  21. Rochefort GY, Pallu S, Benhamou CL (2010) Osteocyte: the unrecognized side of bone tissue. Osteoporos Int 21(9):1457–1469. doi:10.1007/s00198-010-1194-5

    Article  CAS  PubMed  Google Scholar 

  22. Bonewald LF (2011) The amazing osteocyte. J Bone Miner Res 26(2):229–238. doi:10.1002/jbmr.320

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Bonewald LF, Kneissel M, Johnson M (2013) Preface: the osteocyte. Bone 54(2):181. doi:10.1016/j.bone.2013.02.018

    Article  PubMed  Google Scholar 

  24. Klein-Nulend J, Bakker AD, Bacabac RG, Vatsa A, Weinbaum S (2013) Mechanosensation and transduction in osteocytes. Bone 54(2):182–190. doi:10.1016/j.bone.2012.10.013

    Article  CAS  PubMed  Google Scholar 

  25. Kalajzic I, Matthews BG, Torreggiani E, Harris MA, Divieti Pajevic P, Harris SE (2013) In vitro and in vivo approaches to study osteocyte biology. Bone 54(2):296–306. doi:10.1016/j.bone.2012.09.040

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Seeman E (2006) Osteocytes--martyrs for integrity of bone strength. Osteoporos Int 17(10):1443–1448. doi:10.1007/s00198-006-0220-0

    Article  CAS  PubMed  Google Scholar 

  27. Burr DB, Schaffler MB, Frederickson RG (1988) Composition of the cement line and its possible mechanical role as a local interface in human compact bone. J Biomech 21(11):939–945

    Article  CAS  PubMed  Google Scholar 

  28. O’Brien FJ, Taylor D, Lee TC (2003) Microcrack accumulation at different intervals during fatigue testing of compact bone. J Biomech 36(7):973–980

    Article  PubMed  Google Scholar 

  29. Schaffler MB, Burr DB, Frederickson RG (1987) Morphology of the osteonal cement line in human bone. Anat Rec 217(3):223–228. doi:10.1002/ar.1092170302

    Article  CAS  PubMed  Google Scholar 

  30. Skedros JG, Holmes JL, Vajda EG, Bloebaum RD (2005) Cement lines of secondary osteons in human bone are not mineral-deficient: new data in a historical perspective. Anat Rec A: Discov Mol Cell Evol Biol 286(1):781–803. doi:10.1002/ar.a.20214

    Article  Google Scholar 

  31. Davies JE (2007) Bone bonding at natural and biomaterial surfaces. Biomaterials 28(34):5058–5067. doi:10.1016/j.biomaterials.2007.07.049

    Article  CAS  PubMed  Google Scholar 

  32. Kingsmill VJ, Boyde A (1998) Mineralisation density of human mandibular bone: quantitative backscattered electron image analysis. J Anat 192(Pt 2):245–256

    Article  PubMed Central  PubMed  Google Scholar 

  33. Pannarale L, Braidotti P, d’Alba L, Gaudio E (1994) Scanning electron microscopy of collagen fiber orientation in the bone lamellar system in non-decalcified human samples. Acta Anat (Basel) 151(1):36–42

    Article  CAS  Google Scholar 

  34. Giraud-Guille M-M, Besseau L, Martin R (2003) Liquid crystalline assemblies of collagen in bone and in vitro systems. J Biomech 36(10):1571–1579

    Article  PubMed  Google Scholar 

  35. Hassenkam T, Fantner GE, Cutroni JA, Weaver JC, Morse DE, Hansma PK (2004) High-resolution AFM imaging of intact and fractured trabecular bone. Bone 35(1):4–10. doi:10.1016/j.bone.2004.02.024

    Article  PubMed  Google Scholar 

  36. Bromage TG, Goldman HM, McFarlin SC, Warshaw J, Boyde A, Riggs CM (2003) Circularly polarized light standards for investigations of collagen fiber orientation in bone. Anat Rec B New Anat 274(1):157–168. doi:10.1002/ar.b.10031

    Article  PubMed  Google Scholar 

  37. Kazanci M, Roschger P, Paschalis EP, Klaushofer K, Fratzl P (2006) Bone osteonal tissues by Raman spectral mapping: orientation-composition. J Struct Biol 156(3):489–496. doi:10.1016/j.jsb.2006.06.011

    Article  CAS  PubMed  Google Scholar 

  38. Peyrin F, Salomé M, Nuzzo S, Cloetens P, Laval-Jeantet AM, Baruchel J (2000) Perspectives in three-dimensional analysis of bone samples using synchrotron radiation microtomography. Cell Mol Biol 46(6):1089–1102

    CAS  PubMed  Google Scholar 

  39. Labiche J-C, Mathon O, Pascarelli S et al (2007) Invited article: the fast readout low noise camera as a versatile x-ray detector for time resolved dispersive extended x-ray absorption fine structure and diffraction studies of dynamic problems in materials science, chemistry, and catalysis. Rev Sci Instrum 78(9):091301. doi:10.1063/1.2783112

    Article  PubMed  Google Scholar 

  40. Hesse B, Männicke N, Pacureanu A et al (2014) Accessing osteocyte lacunar geometrical properties in human jaw bone on the sub-micron length scale using Synchrotron Radiation μCT. J Microsc 255:158–168

    Article  PubMed  Google Scholar 

  41. Dong P, Haupert S, Hesse B et al (2014) 3D osteocyte lacunar morphometric properties and distributions in human femoral cortical bone using synchrotron radiation micro-CT images. Bone 60:172–185

    Article  PubMed  Google Scholar 

  42. Hesse B, Langer M, Varga P et al (2014) Alterations of Mass Density and 3D Osteocyte Lacunar Properties in Bisphosphonate-Related Osteonecrotic Human Jaw Bone, a Synchrotron μCT Study. PLoS One 9(2), e88481. doi:10.1371/journal.pone.0088481

    Article  PubMed Central  PubMed  Google Scholar 

  43. Carter Y, Thomas CDL, Clement JG, Peele AG, Hannah K, Cooper DMLL (2013) Variation in osteocyte lacunar morphology and density in the human femur--a synchrotron radiation micro-CT study. Bone 52(1):126–132. doi:10.1016/j.bone.2012.09.010

    Article  PubMed  Google Scholar 

  44. Carter Y, Thomas CDL, Clement JG, Cooper DML (2013) Femoral osteocyte lacunar density, volume and morphology in women across the lifespan. J Struct Biol 183(3):519–526. doi:10.1016/j.jsb.2013.07.004

    Article  PubMed  Google Scholar 

  45. Pacureanu A, Larrue A, Olivier C, Langer M, Lafage-Proust MH, Peyrin F (2013) Adaptive filtering for enhancement of the osteocyte cell network in 3D microtomography images. IRBM 34(1):48–52

    Article  Google Scholar 

  46. Pacureanu A, Langer M, Boller E, Tafforeau P, Peyrin F (2012) Nanoscale imaging of the bone cell network with synchrotron X-ray tomography: optimization of acquisition setup. Med Phys 39(4):2229. doi:10.1118/1.3697525

    Article  PubMed  Google Scholar 

  47. Schroer CG, Meyer J, Kuhlmann M et al (2002) Nanotomography based on hard x-ray microscopy with refractive lenses. Appl Phys Lett 81(8):1527. doi:10.1063/1.1501451

    Article  CAS  Google Scholar 

  48. Centonze VE, White JG (1998) Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal imaging. Biophys J 75(4):2015–2024. doi:10.1016/S0006-3495(98)77643-X

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Sugawara Y, Kamioka H, Honjo T, Tezuka K, Takano-Yamamoto T (2005) Three-dimensional reconstruction of chick calvarial osteocytes and their cell processes using confocal microscopy. Bone 36(5):877–883. doi:10.1016/j.bone.2004.10.008

    Article  CAS  PubMed  Google Scholar 

  50. Schneider P, Meier M, Wepf R, Müller R (2011) Serial FIB/SEM imaging for quantitative 3D assessment of the osteocyte lacuno-canalicular network. Bone 49(2):304–311. doi:10.1016/j.bone.2011.04.005

    Article  PubMed  Google Scholar 

  51. Kamioka H, Murshid SA, Ishihara Y et al (2009) A method for observing silver-stained osteocytes in situ in 3-microm sections using ultra-high voltage electron microscopy tomography. Microsc Microanal 15(5):377–383. doi:10.1017/S1431927609990420

    Article  CAS  PubMed  Google Scholar 

  52. Andrews JC, Almeida E, van der Meulen MCH et al (2010) Nanoscale X-ray microscopic imaging of mammalian mineralized tissue. Microsc Microanal 16(3):327–336. doi:10.1017/S1431927610000231

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Andrews JC, Brennan S, Patty C et al (2008) A high resolution, hard x-ray bio-imaging facility at SSRL. Synchrotron Radiat News 21(3):17–26. doi:10.1080/08940880802406067

    Article  PubMed Central  PubMed  Google Scholar 

  54. Elser V (2003) Solution of the crystallographic phase problem by iterated projections. Acta Crystallogr Sect A: Found Crystallogr 59(3):201–209. doi:10.1107/S0108767303002812

    Article  Google Scholar 

  55. Fienup JR (1982) Phase retrieval algorithms: a comparison. Appl Opt 21(15):2758–2769. doi:10.1364/AO.21.002758

    Article  CAS  PubMed  Google Scholar 

  56. Gerchberg RW, Saxton WO (1972) A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik (Stuttg) 35:237–246

    Google Scholar 

  57. Bauschke HH, Combettes PL, Luke DR (2002) Phase retrieval, error reduction algorithm, and Fienup variants: a view from convex optimization. J Opt Soc Am A 19(7):1334. doi:10.1364/JOSAA.19.001334

    Article  Google Scholar 

  58. Thibault P, Elser V (2010) X-ray diffraction microscopy. Annu Rev Condens Matter Phys 1(1):237–255. doi:10.1146/annurev-conmatphys-070909-104034

    Article  CAS  Google Scholar 

  59. Elser V, Rankenburg I, Thibault P (2007) Searching with iterated maps. Proc Natl Acad Sci U S A 104(2):418–423. doi:10.1073/pnas.0606359104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Schroer C, Boye P, Feldkamp J et al (2008) Coherent X-ray diffraction imaging with nanofocused illumination. Phys Rev Lett 101(9):090801. doi:10.1103/PhysRevLett.101.090801

    Article  CAS  PubMed  Google Scholar 

  61. Huang X, Nelson J, Kirz J et al (2009) Soft X-ray diffraction microscopy of a frozen hydrated yeast cell. Phys Rev Lett 103(19):198101. doi:10.1103/PhysRevLett.103.198101

    Article  PubMed Central  PubMed  Google Scholar 

  62. Maiden AM, Rodenburg JM (2009) An improved ptychographical phase retrieval algorithm for diffractive imaging. Ultramicroscopy 109(10):1256–1262. doi:10.1016/j.ultramic.2009.05.012

    Article  CAS  PubMed  Google Scholar 

  63. Thibault P, Dierolf M, Menzel A, Bunk O, David C, Pfeiffer F (2008) High-resolution scanning x-ray diffraction microscopy. Science 321(5887):379–382. doi:10.1126/science.1158573

    Article  CAS  PubMed  Google Scholar 

  64. Thibault P, Dierolf M, Bunk O, Menzel A, Pfeiffer F (2009) Probe retrieval in ptychographic coherent diffractive imaging. Ultramicroscopy 109(4):338–343. doi:10.1016/j.ultramic.2008.12.011

    Article  CAS  PubMed  Google Scholar 

  65. Hoppe W (1969) Beugung im inhomogenen Primärstrahlwellenfeld. I. Prinzip einer Phasenmessung von Elektronenbeungungsinterferenzen. Acta Crystallogr Sect A 25(4):495–501. doi:10.1107/S0567739469001045

    Article  Google Scholar 

  66. Guinier A (1994) X-ray diffraction in crystals, imperfect crystals, and amorphous bodies. Dover Publications (New York).

  67. Langer M, Cloetens P, Peyrin F (2010) Regularization of phase retrieval with phase-attenuation duality prior for 3-D holotomography. IEEE Trans Image Process 19(9):2428–2436

    Article  PubMed  Google Scholar 

  68. Paganin D, Mayo SC, Gureyev TE, Miller PR, Wilkins SW (2002) Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J Microsc 206(1):33–40. doi:10.1046/j.1365-2818.2002.01010.x

    Article  CAS  PubMed  Google Scholar 

  69. Wilkins SW, Gureyev TE, Gao D, Pogany A, Stevenson AW (1996) Phase-contrast imaging using polychromatic hard X-rays. Nature 384(6607):335–338

    Article  CAS  Google Scholar 

  70. Dierolf M, Menzel A, Thibault P et al (2010) Ptychographic X-ray computed tomography at the nanoscale. Nature 467(7314):436–439. doi:10.1038/nature09419

    Article  CAS  PubMed  Google Scholar 

  71. Holler M, Diaz A, Guizar-Sicairos M et al (2014) X-ray ptychographic computed tomography at 16 nm isotropic 3D resolution. Sci Rep 4:3857. doi:10.1038/srep03857

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Ghiglia DC, Pitt MD (1998) Two-dimensional phase unwrapping: theory, algorithms, and software. Wiley

  73. Mokso R, Cloetens P, Maire E, Ludwig W, Buffière J-Y (2007) Nanoscale zoom tomography with hard x rays using Kirkpatrick-Baez optics. Appl Phys Lett 90(14):144104. doi:10.1063/1.2719653

    Article  Google Scholar 

  74. Langer M, Cloetens P, Peyrin F (2009) Fourier-wavelet regularization of phase retrieval in x-ray in-line phase tomography. J Opt Soc Am A Opt Image Sci Vis 26(8):1876–1881. doi:10.1364/JOSAA.26.001876

    Article  CAS  PubMed  Google Scholar 

  75. Guigay JP, Langer M, Boistel R, Cloetens P (2007) Mixed transfer function and transport of intensity approach for phase retrieval in the Fresnel region. Opt Lett 32(12):1617–1619. doi:10.1364/OL.32.001617

    Article  PubMed  Google Scholar 

  76. Langer M, Cloetens P, Pacureanu A, Peyrin F (2012) X-ray in-line phase tomography of multimaterial objects. Opt Lett 37(11):2151. doi:10.1364/OL.37.002151

    Article  PubMed  Google Scholar 

  77. Langer M, Cloetens P, Hesse B et al (2014) Priors for X-ray in-line phase tomography of heterogeneous objects. Philos Trans R Soc A 372:20130129

    Article  Google Scholar 

  78. Langer M, Pacureanu A, Suhonen H, Grimal Q, Cloetens P, Peyrin F (2012) X-ray phase nanotomography resolves the 3D human bone ultrastructure. PLoS One 7(8), e35691. doi:10.1371/journal.pone.0035691

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Moosmann J, Hofmann R, Baumbach T (2011) Single-distance phase retrieval at large phase shifts. Opt Express 19:12066–12073. doi:10.1364/OE.19.012066

    Article  PubMed  Google Scholar 

  80. Moosmann J, Hofmann R, Bronnikov A, Baumbach T (2010) Nonlinear phase retrieval from single-distance radiograph. Opt Express 18:25771–25785. doi:10.1364/OE.18.025771

    Article  PubMed  Google Scholar 

  81. Davidoiu V, Sixou B, Langer M, Peyrin F (2013) In-line phase tomography using nonlinear phase retrieval. Ann Univ Bucharest Math Ser 4(LXII):115–122

    Google Scholar 

  82. Hesse B, Varga P, Langer M et al (2014) Canalicular network morphology is the major determinant of the spatial distribution of mass density in human bone tissue - evidence by means of synchrotron radiation phase-contrast nano-CT. J Bone Miner Res. doi:10.1002/jbmr.2324

    Google Scholar 

  83. Varga P, Pacureanu A, Langer M et al (2013) Investigation of the 3D orientation of mineralized collagen fibrils in human lamellar bone using synchrotron X-ray phase nano-tomography. Acta Biomater 9:8118–8127

    Article  CAS  PubMed  Google Scholar 

  84. Varga P, Hesse B, Langer M et al (2015) Strains experienced by osteocytes in situ as predicted by case specific finite element analysis. Biomech Model Mechanobiol 14(2):267–282

    Article  PubMed  Google Scholar 

  85. Verbruggen SW, Vaughan TJ, McNamara LM (2012) Strain amplification in bone mechanobiology: a computational investigation of the in vivo mechanics of osteocytes. J R Soc Interface 9(75):2735–2744. doi:10.1098/rsif.2012.0286

    Article  PubMed Central  PubMed  Google Scholar 

  86. McNamara LM, Majeska RJ, Weinbaum S, Friedrich V, Schaffler MB (2009) Attachment of osteocyte cell processes to the bone matrix. Anat Rec (Hoboken) 292(3):355–363. doi:10.1002/ar.20869

    Article  CAS  Google Scholar 

  87. Vatsa A, Breuls RG, Semeins CM, Salmon PL, Smit TH, Klein-Nulend J (2008) Osteocyte morphology in fibula and calvaria — is there a role for mechanosensing? Bone 43(3):452–8. doi:10.1016/j.bone.2008.01.030

    Article  PubMed  Google Scholar 

  88. van Hove RP, Nolte PA, Vatsa A, Semeins CM, Salmon PL, Smit TH, Klein-Nulend J (2009) Osteocyte morphology in human tibiae of different bone pathologies with different bone mineral density--is there a role for mechanosensing? Bone 45(2):321–9. doi:10.1016/j.bone.2009.04.238

    Article  PubMed  Google Scholar 

  89. Pacureanu A, Langer M, Boller E, Tafforeau P, Peyrin F (2012) Nanoscale imaging of the bone cell network with synchrotron X-ray tomography: optimization of acquisition setup. Med Phys 39(4):2229. doi:10.1118/1.3697525

    Article  PubMed  Google Scholar 

  90. Andrews JC, Almeida E, van der Meulen MC, Alwood JS, Lee C, Liu Y, Chen J, Meirer F, Feser M, Gelb J, Rudati J, Tkachuk A, Yun W, Pianetta P (2010) Nanoscale X-ray microscopic imaging of mammalian mineralized tissue. Microsc Microanal 16(3):327–36. doi:10.1017/S1431927610000231

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Dierolf M, Menzel A, Thibault P, Schneider P, Kewish CM, Wepf R, Bunk O, Pfeiffer F (2010) Ptychographic X-ray computed tomography at the nanoscale. Nature 467:436–439. doi:10.1038/nature09419

    Article  CAS  PubMed  Google Scholar 

  92. Langer M, Pacureanu A, Suhonen H, Grimal Q, Cloetens P, Peyrin F (2012) X-ray phase nanotomography resolves the 3D human bone ultrastructure. PLoS One 7(8), e35691. doi:10.1371/journal.pone.0035691

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Varga P, Pacureanu A, Langer M, Suhonen H, Hesse B, Grimal Q, Cloetens P, Raum K, Peyrin F (2013) Investigation of the three-dimensional orientation of mineralized collagen fibrils in human lamellar bone using synchrotron X-ray phase nano-tomography. Acta Biomater 9(9):8118–27. doi:10.1016/j.actbio.2013.05.015

    Article  CAS  PubMed  Google Scholar 

  94. Hesse B, Langer M, Varga P, Pacureanu A, Dong P, Schrof S, Männicke N, Suhonen H, Olivier C, Maurer P, Kazakia GJ, Raum K, Peyrin F (2014) Alterations of mass density and 3D osteocyte lacunar properties in bisphosphonate-related osteonecrotic human jaw bone, a synchrotron μCT study. PLoS One 9(2), e88481. doi:10.1371/journal.pone.0088481

    Article  PubMed Central  PubMed  Google Scholar 

  95. Sugawara Y, Ando R, Kamioka H, Ishihara Y, Honjo T, Kawanabe N, Kurosaka H, Takano-Yamamoto T, Yamashiro T (2011) The three-dimensional morphometry and cell-cell communication of the osteocyte network in chick and mouse embryonic calvaria. Calcif Tissue Int 88(5):416–24. doi:10.1007/s00223-011-9471-7

    Article  CAS  PubMed  Google Scholar 

  96. Debbie J Stokes, J R Tong, J Juhasz, P A Midgley, Serena M Best. Characterisation and 3D Visualisation of Biomaterials and Tissues using Focused Ion Beam (E)SEM. University of Cambridge,United Kingdom. Microscopy and Microanalysis. 08/2005; 11(S02):1260–1261. doi:10.1017/S143192760550285X

  97. Schneider P, Meier M, Wepf R, Müller R (2011) Serial FIB/SEM imaging for quantitative 3D assessment of the osteocyte lacuno-canalicular network. Bone 49(2):304–11. doi:10.1016/j.bone.2011.04.005

    Article  PubMed  Google Scholar 

  98. Varga P, Pacureanu A, Langer M, Hesse B, Peyrin F, Raum K (2013) Case specific finite element analysis of the strains experienced by osteocytes. In: V International Conference on Computational Bioengineering

  99. Pacureanu A, Larrue A, Langer M et al (2013) Adaptive filtering for enhancement of the osteocyte cell network in 3D microtomography images. IRBM 34(1):48–52. doi:10.1016/j.irbm.2012.12.013

    Article  Google Scholar 

  100. Zuluaga MA, Orkisz M, Dong P, Pacureanu A, Gouttenoire P-J, Peyrin F (2014) Bone canalicular network segmentation in 3D nano-CT images through geodesic voting and image tessellation. Phys Med Biol 59(9):2155–2171

    Article  PubMed  Google Scholar 

  101. Mader KS, Schneider P, Müller R, Stampanoni M (2013) A quantitative framework for the 3D characterization of the osteocyte lacunar system. Bone 57(1):142–154

    Article  PubMed  Google Scholar 

  102. Dong P, Pacureanu A, Zuluaga MA, Olivier C, Grimal Q, Peyrin F (2014) Quantification of the 3D morphology of the bone cell network from synchrotron micro-CT images. Image Anal Stereol 33(2):157. doi:10.5566/ias.v33.p157-166

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Bernhard Hesse, Alexandra Pacureanu, Peter Varga and Loriane Weber for helpful suggestions and discussions, as well as the support of the ESRF scientists, in particular Peter Cloetens and Heiki Suhonen. This work was performed within the framework of the LABEX PRIMES (ANR-11-LABX-0063) of Université de Lyon, within the program "Investissements d'Avenir" (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR).

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Langer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Langer, M., Peyrin, F. 3D X-ray ultra-microscopy of bone tissue. Osteoporos Int 27, 441–455 (2016). https://doi.org/10.1007/s00198-015-3257-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-015-3257-0

Keywords

Navigation