Skip to main content
Log in

Neuroimaging of Parkinson’s disease and atypical parkinsonism

  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

The basal ganglia and its associated circuitry can be assessed with a variety of neuroimaging methods that can provide information regarding specific neurotransmitter systems, the functional activity of brain regions, and the structural integrity of these regions. In Parkinson’s disease (PD) and related atypical parkinsonian syndromes (APS), these imaging methods may be useful for many reasons, including aiding in differential diagnosis and measuring the efficacy of new therapies. This paper reviews recent developments in the application of neuroimaging to the assessment of PD and related APS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Braak H, Braak E: Pathoanatomy of Parkinson’s disease. J Neurol 2000, 247:II3-II10.

    Article  PubMed  Google Scholar 

  2. Kish SJ, Shannak K, Hornykiewicz O: Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease. Pathophysiologic and clinical implications. N Engl J Med 1988, 318:876–880.

    Article  PubMed  CAS  Google Scholar 

  3. Alexander GE, Crutcher MD, DeLong MR: Basal gangliathalamocortical circuits: parallel substrates for motor, oculomotor, "prefrontal" and "limbic" functions. Prog Brain Res 1990, 85:119–146.

    Article  PubMed  CAS  Google Scholar 

  4. Wichmann T, DeLong MR: Functional and pathophysiological models of the basal ganglia. Curr Opin Neurobiol 1996, 6:751–758.

    Article  PubMed  CAS  Google Scholar 

  5. Zgaljardic DJ, Borod JC, Foldi NS, et al.: A review of the cognitive and behavioral sequelae of Parkinson’s disease: relationship to frontostriatal circuitry. Cogn Behav Neurology 2003, 16:193–210.

    Article  Google Scholar 

  6. Stacy M, Jankovic J: Differential diagnosis of Parkinson’s disease and the parkinsonism plus syndromes. Neurol Clin 1992, 10:341–359.

    PubMed  CAS  Google Scholar 

  7. Dhawan V, Eidelberg D: PET imaging in Parkinson’s disease. Adv Clin Neurosci 2003, 13:251–276. This is an excellent review of PET imaging in Parkinson’s disease that also contains high-quality images.

    Google Scholar 

  8. Berding G, Brucke T, Odin P, et al.: [123I] beta-CIT SPECT imaging of dopamine and serotonin transporters in Parkinson’s disease and multiple system atrophy. Nuklearmedizin 2003, 42:31–38.

    PubMed  CAS  Google Scholar 

  9. Kim YJ, Ichise M, Ballinger JR, et al.: Combination of dopamine transporter and D2 receptor SPECT in the diagnostic evaluation of PD, MSA, and PSP. Mov Disord 2002, 17:303–312.

    Article  PubMed  Google Scholar 

  10. Antonini A, Benti R, De Notaris R, et al.: 123I-loflupane/ SPECT binding to striatal dopamine transporter (DAT) uptake in patients with Parkinson’s disease, multiple system atrophy, and progressive supranuclear palsy. Neurol Sci 2003, 24:149–150.

    Article  PubMed  CAS  Google Scholar 

  11. Frey KA, Koeppe R, Kilbourn M, et al.: Presynaptic monoaminergic vesicles in Parkinson’s disease and normal aging. Ann Neurol 1996, 40:873–874.

    Article  PubMed  CAS  Google Scholar 

  12. Frey KA, Koeppe RA, Kilbourn MR: Imaging the vesicular monoamine transporter. Adv Neurol 2001, 86:237–247.

    PubMed  CAS  Google Scholar 

  13. Gilman S, Koeppe RA, Junck L, et al.: Decreased striatal monoaminergic terminals in multiple system atrophy detected with positron emission tomography. Ann Neurol 1999, 45:769–777.

    Article  PubMed  CAS  Google Scholar 

  14. Suzuki M, Desmond TJ, Albin RL, et al.: Cholinergic vesicular transporters in progressive supranuclear palsy. Neurology 2002, 58:1013–1018.

    PubMed  Google Scholar 

  15. Eidelberg D, Edwards C, Mentis MJ, et al.: Movement disorders: Parkinson’s disease. In Brain Mapping: The Disorders. Edited by Mazziota JC, Toga AW, Frackowiak RS. San Diego: Academic Press; 2000:241–261.

    Google Scholar 

  16. Brooks DJ, Ibanez V, Sawle GV, et al.: Differing patterns of striatal 18F-dopa uptake in Parkinson’s disease, multiple system atrophy, and progressive supranuclear palsy. Ann Neurology 1990, 28:547–555.

    Article  CAS  Google Scholar 

  17. Taniwaki T, Nakagawa M, Yamada T, et al.: Cerebral metabolic changes in early multiple system atrophy: a PET study. J Neurol Sci 2002, 200:79–84.

    Article  PubMed  Google Scholar 

  18. Antonini A, Leenders KL, Vontobel P, et al.: Complementary PET studies of striatal neuronal function in the differential diagnosis between multiple system atrophy and Parkinson’s disease. Brain 1997, 120:2187–2195.

    Article  PubMed  Google Scholar 

  19. Laureys S, Salmon E, Garraux G, et al.: Fluorodopa uptake and glucose metabolism in early stages of corticobasal degeneration. J Neurol 1999, 246:1151–1158.

    Article  PubMed  CAS  Google Scholar 

  20. Otsuka M, Kuwabara Y, Ichiya Y, et al.: Differentiating between multiple system atrophy and Parkinson’s disease by positron emission tomography with 18F-dopa and 18F-FDG. Ann Nucl Med 1997, 11:251–257.

    Article  PubMed  CAS  Google Scholar 

  21. Hosaka K, Ishii K, Sakamoto S, et al.: Voxel-based comparison of regional cerebral glucose metabolism between PSP and corticobasal degeneration. J Neurol Sci 2002, 199:67–71.

    Article  PubMed  CAS  Google Scholar 

  22. Coulier IM, de Vries JJ, Leenders KL: Is FDG-PET a useful tool in clinical practice for diagnosing corticobasal ganglionic degeneration? Mov Disord 2003, 18:1175–1178.

    Article  PubMed  Google Scholar 

  23. Hossain AK, Murata Y, Zhang L, et al.: Brain perfusion SPECT in patients with corticobasal degeneration: analysis using statistical parametric mapping. Mov Disord 2003, 18:697–703.

    Article  PubMed  Google Scholar 

  24. Ukmar M, Moretti R, Torre P, et al.: Corticobasal degeneration: structural and functional MRI and single-photon emission computed tomography. Neuroradiology 2003, 45:708–712.

    Article  PubMed  CAS  Google Scholar 

  25. Eidelberg D, Moeller JR, Dhawan V, et al.: The metabolic anatomy of Parkinson’s disease: complementary [18F] fluorodeoxyglucose and [18F] fluorodopa positron emission tomographic studies. Mov Disord 1990, 5:203–213.

    Article  PubMed  CAS  Google Scholar 

  26. Eidelberg D, Moeller JR, Dhawan V, et al.: The metabolic topography of parkinsonism. J Cereb Blood Flow Metab 1994, 14:783–801.

    PubMed  CAS  Google Scholar 

  27. Antonini A, Kazumata K, Feigin A, et al.: Differential diagnosis of parkinsonism with [18F] fluorodeoxyglucose and PET. Mov Disord 1998, 13:268–274.

    Article  PubMed  CAS  Google Scholar 

  28. Feigin A, Antonini A, Fakuda M, et al.: Tc-99m ethylene cysteinate dimer SPECT in the differential diagnosis of parkinsonism. Mov Disord 2002, 6:1265–1270.

    Article  Google Scholar 

  29. Bosman T, Van Laere K, Santens P: Anatomically standardized 99mTc-ECD brain perfusion SPET allows accurate differentiation between healthy volunteers, multiple system atrophy and idiopathic Parkinson’s disease. Eur J Nucl Med Mol Imaging 2003, 30:16–24.

    Article  PubMed  CAS  Google Scholar 

  30. Yekhlef F, Ballan G, Macia F, et al.: Routine MRI for the differential diagnosis of Parkinson’s disease, MSA, PSP, and CBGD. J Neural Transm 2003, 110:151–169.

    Article  PubMed  CAS  Google Scholar 

  31. Kraft E, Trenkwalder C, Auer DP: T2-weighted MRI differentiates multiple system atrophy from Parkinson’s disease. Neurology 2002, 59:1265–1267.

    PubMed  Google Scholar 

  32. Savoiardo M: Differential diagnosis of Parkinson’s disease and atypical parkinsonian disorders by magnetic resonance imaging. Neurol Sci 2003, 24:S35-S37.

    Article  PubMed  Google Scholar 

  33. Yamamoto T, Oya Y, Ogawa M, et al.: A follow-up study on brainstem atrophy in progressive supranuclear palsy—when does brain MRI contribute to the differential diagnosis between progressive supranuclear palsy and Parkinson’s disease? Rinsho Shinkeigaku 2003, 43:392–397.

    PubMed  Google Scholar 

  34. Arnold G, Tatsch K, Kraft E, et al.: Steele-Richardson-Olszewski syndrome: reduction of dopamine D2 receptor binding relates to the severity of midbrain atrophy in vivo: 123IBZM SPECT and MRI study. Mov Disord 2002, 17:557–562.

    Article  PubMed  Google Scholar 

  35. Walter U, Niehaus L, Probst T, et al.: Brain parenchyma sonography discriminates Parkinson’s disease and atypical parkinsonian syndromes. Neurology 2003, 60:74–77. This study found that sonography can be used to discriminate PD from MSA and PSP, with a sensitivity and specificity of greater than 90%.

    Article  PubMed  CAS  Google Scholar 

  36. Berg D, Roggendorf W, Schroder U, et al.: Echogenicity of the substantia nigra: association with increased iron content and marker for susceptibility to nigrostriatal injury. Arch Neurol 2002, 59:999–1005.

    Article  PubMed  Google Scholar 

  37. Behnke S, Berg D, Becker G: Does ultrasound disclose a vulnerability factor for Parkinson’s disease? J Neurol 2003, 250:I24-I27.

    Article  PubMed  Google Scholar 

  38. Ruprecht-Dörfler P, Berg D, Tucha O, et al.: Echogenicity of the substantia nigra in relatives of patients with sporadic Parkinson’s disease. NeuroImage 2003, 18:416–422.

    Article  PubMed  Google Scholar 

  39. Feigin A, Fukuda M, Dhawan V, et al.: Metabolic correlates of levodopa response in Parkinson’s disease. Neurology 2001, 57:2083–2088.

    PubMed  CAS  Google Scholar 

  40. Eidelberg D, Moeller JR, Ishikawa T, et al.: Regional metabolic correlates of surgical outcome following unilateral pallidotomy for Parkinson’s disease. Ann Neurol 1996, 39:450–459.

    Article  PubMed  CAS  Google Scholar 

  41. Su P, Ma Y, Fukuda M, et al.: Metabolic changes following subthaladotomy for advanced Parkinson’s disease. Ann Neurol 2001, 50:514–520.

    Article  PubMed  CAS  Google Scholar 

  42. Fukuda M, Mentis MJ, Ma Y, et al.: Networks mediating the clinical effects of pallidal brain stimulation for Parkinson’s disease: a PET study of resting-state glucose metabolism. Brain 2001, 124:1601–1609.

    Article  PubMed  CAS  Google Scholar 

  43. Fukuda M, Mentis M, Ghilardi MF, et al.: Functional correlates of pallidal stimulation for Parkinson’s disease. Ann Neurol 2001, 49:155–165.

    Article  PubMed  CAS  Google Scholar 

  44. Feigin A, Ghilardi MF, Fukuda M, et al.: Effects of levodopa infusion on motor activation responses in Parkinson’s disease. Neurology 2002, 59:220–226.

    PubMed  CAS  Google Scholar 

  45. Mentis MJ, Dhawan V, Feigin A, et al.: Early stage Parkinson’s disease patients and normal volunteers: comparative mechanisms of sequence learning. Hum Brain Map 2003, 20:246–258. This study found that nondemented PD patients exhibit greater cortical activation to achieve comparable performance with control subjects on a motor-learning task.

    Article  Google Scholar 

  46. Fukuda M, Ghilardi MF, Carbon M, et al.: Pallidal stimulation for parkinsonism: improved brain activation during sequence learning. Ann Neurol 2002, 52:144–152.

    Article  PubMed  Google Scholar 

  47. Feigin A, Ghilardi MF, Carbon M, et al.: Effects of levodopa on motor sequence learning in Parkinson’s disease. Neurology 2003, 60:1744–1749. This study demonstrated that levodopa produces a subtle detrimental effect on motor learning in nondemented PD patients. Furthermore, levodopa produced brain activation responses in occipital association cortex that correlated with learning performance.

    PubMed  CAS  Google Scholar 

  48. Carbon M, Ghilardi MF, Feigin A, et al.: Learning networks in health and Parkinson’s disease: reproducibility and treatment effects. Hum Brain Map 2003, 11:197–211. Using 15OH2O/PET, this study identified networks associated with the acquisition and retrieval phases of motor learning. A frontoparietal network predicted learning performance in PD patients both at baseline and with GPi DBS. By contrast, levodopa did not enhance activation of this network.

    Article  Google Scholar 

  49. Nakamura T, Ghilardi MF, Mentis M, et al.: Functional networks in motor sequence learning: abnormal topographies in Parkinson’s disease. Hum Brain Map 2001, 12:42–60.

    Article  CAS  Google Scholar 

  50. Ravina BM, Fagan SC, Hart RG, et al.: Neuroprotective agents for clinical trials in Parkinson’s disease: a systematic assessment. Neurology 2003, 60:1234–1240.

    PubMed  CAS  Google Scholar 

  51. Morrish PK, Sawle GV, Brooks DJ: A [18F] dopa-PET and clinical study of the rate of progression in Parkinson’s disease. Brain 1996, 119:585–591.

    Article  PubMed  Google Scholar 

  52. Seibyl JP, Marek KL, Quinlan D, et al.: Decreased single photon emission computed tomographic [123I] beta-CIT striatal uptake correlates with symptom severity in Parkinson’s disease. Ann Neurol 1995, 38:589–598.

    Article  PubMed  CAS  Google Scholar 

  53. Marek K, Innis R, van Dyck C, et al.: [123I] beta-CIT SPECT imaging assessment of the rate of Parkinson’s disease progression. Neurology 2001, 57:2089–2094.

    PubMed  CAS  Google Scholar 

  54. Nurmi E, Bergman J, Eskola O, et al.: Progression of dopaminergic hypofunction in striatal subregions in Parkinson’s disease using [18F] CFT PET. Synapse 2003, 48:109–115.

    Article  PubMed  CAS  Google Scholar 

  55. Pirker W, Holler I, Gerschlager W, et al.: Measuring the rate of progression of Parkinson’s disease over a 5-year period with beta-CIT SPECT. Mov Disord 2003, 18:1266–1272.

    Article  PubMed  Google Scholar 

  56. Nurmi E, Ruottinen HM, Bergman J, et al.: Rate of progression in Parkinson’s disease: a 6-[18F] fluoro-L-dopa PET study. Mov Disord 2001, 16:608–615.

    Article  PubMed  CAS  Google Scholar 

  57. Moeller JR, Eidelberg D: Divergent expression of regional metabolic topographies in Parkinson’s disease and normal ageing. Brain 1997, 120:2197–2206.

    Article  PubMed  Google Scholar 

  58. Kaasinen V, Aalto S, Någren K, et al.: Extrastriatal dopamine D2 receptors in Parkinson’s disease: a longitudinal study. J Neural Transm 2003, 110:591–601.

    Article  PubMed  CAS  Google Scholar 

  59. Rakshi JS, Uema T, Ito K, et al.: Frontal, midbrain and striatal dopaminergic function in early and advanced Parkinson’s disease: a 3D [18F]dopa-PET study. Brain 1999, 122:1637–1650.

    Article  PubMed  Google Scholar 

  60. Whone AL, Watts RL, Stoessl AJ, et al.: Slower progression of Parkinson’s disease with ropinirole versus levodopa: the REAL-PET study. Ann Neurol 2003, 54:93–101. A clinical trial that utilized FDOPA/PET as an outcome measure for assessing a potential neuroprotective agent.

    Article  PubMed  CAS  Google Scholar 

  61. Parkinson Study Group: Dopamine transporter brain imaging to assess the effects of Pramipexole vs Levodopa on Parkinson’s disease progression. JAMA 2002, 287:1653–1661.

    Article  Google Scholar 

  62. Fahn S, for the Parkinson Study Group: Results of the ELLDOPA (earlier vs. later levodopa) study. Mov Disord 2002, 17:513–514.

    Article  PubMed  Google Scholar 

  63. Biglan KM, Holloway RG: Surrogate endpoints in Parkinson’s disease research. Curr Neurol Neurosci Rep 2003, 3:314–320.

    PubMed  Google Scholar 

  64. Brooks DJ, Frey KA, Marek KL, et al.: Assessment of neuroimaging techniques as biomarkers of the progression of Parkinson’s disease. Exp Neurol 2003, 184:S68-S79. Provides a point-by-point approach to evaluating the reliability and validity of neuroimaging measures of progression in PD.

    Article  PubMed  CAS  Google Scholar 

  65. Morrish PK: The harsh realities facing the use of SPECT imaging in monitoring disease progression in Parkinson’s disease. J Neurol Neurosurg Psychiatry 2003, 74:1447.

    Article  PubMed  CAS  Google Scholar 

  66. Morrish PK: How valid is dopamine transporter imaging as a surrogate marker in research trials in Parkinson’s disease? Mov Disord 2003, 18:S63-S70. An excellent summary of the difficulties and controversies related to using current imaging methods as outcome measures in neuroprotection clinical trials.

    Article  PubMed  Google Scholar 

  67. Guttman M, Stewart D, Hussey D, et al.: Influence of L-dopa and pramipexole in striatal dopamine transporters in early PD. Neurology 2001, 56:1559–1564.

    PubMed  CAS  Google Scholar 

  68. Nurmi E, Bergman J, Eskola O, et al.: Reproducibility and effect of levodopa on dopamine transporter function measurements: a [F-18]CFT PET study. J Cereb Blood Flow Metabol 2000, 20:1604–1609.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zgaljardic, D.J., Feigin, A. Neuroimaging of Parkinson’s disease and atypical parkinsonism. Curr Neurol Neurosci Rep 4, 284–289 (2004). https://doi.org/10.1007/s11910-004-0053-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-004-0053-1

Keywords

Navigation