Skip to main content

Brain Imaging in RBD

  • Chapter
  • First Online:
Rapid-Eye-Movement Sleep Behavior Disorder

Abstract

Neuroimaging studies can provide in vivo insights to the early structural and functional brain changes in patients with idiopathic RBD (iRBD) and may help give a prognosis of disease course. This chapter summarizes the major findings of neuroimaging studies in iRBD, a specific prodromal stage of Parkinson’s disease (PD) and other α-synucleinopathies. Molecular imaging techniques, magnetic resonance imaging (MRI), and transcranial sonography (TCS) are all discussed.

Rosalie V. Kogan and Sanne K. Meles are shared first authors; Kathrin Reetz and Wolfgang H.O. Oertel are shared last authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Culebras A, Moore JT. Magnetic resonance findings in REM sleep behavior disorder. Neurology. 1989;39:1519–23.

    Article  PubMed  CAS  Google Scholar 

  2. Eisensehr I, Linke R, Tatsch K, et al. Increased muscle activity during rapid eye movement sleep correlates with decrease of striatal presynaptic dopamine transporters. IPT and IBZM SPECT imaging in subclinical and clinically manifest idiopathic REM sleep behavior disorder, Parkinson’s disease, and controls. Sleep. 2003;26:507–12.

    Article  PubMed  Google Scholar 

  3. Mazza S, Soucy JP, Gravel P, et al. Assessing whole brain perfusion changes in patients with REM sleep behavior disorder. Neurology. 2006;67:1618–22.

    Article  PubMed  CAS  Google Scholar 

  4. Lee JH, Han YH, Cho JW, et al. Evaluation of brain iron content in idiopathic REM sleep behavior disorder using quantitative magnetic resonance imaging. Parkinsonism Relat Disord. 2014;20:776–8.

    Article  PubMed  Google Scholar 

  5. Rahayel S, Montplaisir J, Monchi O, et al. Patterns of cortical thinning in idiopathic rapid eye movement sleep behavior disorder. Mov Disord. 2015;30:680–7.

    Article  PubMed  Google Scholar 

  6. Shirakawa S, Takeuchi N, Uchimura N, et al. Study of image findings in rapid eye movement sleep behavioural disorder. Psychiatry Clin Neurosci. 2002;56:291–2.

    Article  PubMed  Google Scholar 

  7. Debette S, Markus HS. The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ. 2010;341:c3666.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Scherfler C, Frauscher B, Schocke M, et al. White and gray matter abnormalities in idiopathic rapid eye movement sleep behavior disorder: a diffusion-tensor imaging and voxel-based morphometry study. Ann Neurol. 2011;69:400–7.

    Article  PubMed  Google Scholar 

  9. Hanyu H, Inoue Y, Sakurai H, et al. Voxel-based magnetic resonance imaging study of structural brain changes in patients with idiopathic REM sleep behavior disorder. Parkinsonism Relat Disord. 2012;18:136–9.

    Article  PubMed  Google Scholar 

  10. Ellmore TM, Hood AJ, Castriotta RJ, Stimming EF, Bick RJ, Schiess MC. Reduced volume of the putamen in REM sleep behavior disorder patients. Parkinsonism Relat Disord. 2010;16:645–9.

    Article  PubMed  Google Scholar 

  11. Schulz JB, Skalej M, Wedekind D, et al. Magnetic resonance imaging-based volumetry differentiates idiopathic Parkinson’s syndrome from multiple system atrophy and progressive supranuclear palsy. Ann Neurol. 1999;45:65–74.

    Article  PubMed  CAS  Google Scholar 

  12. Brooks DJ, Seppi K, Neuroimaging Working Group on MSA. Proposed neuroimaging criteria for the diagnosis of multiple system atrophy. Mov Disord. 2009;24:949–64.

    Article  PubMed  Google Scholar 

  13. Seppi K, Poewe W. Brain magnetic resonance imaging techniques in the diagnosis of parkinsonian syndromes. Neuroimaging Clin N Am. 2010;20:29–55.

    Article  PubMed  Google Scholar 

  14. Sako W, Murakami N, Izumi Y, Kaji R. The difference in putamen volume between MSA and PD: evidence from a meta-analysis. Parkinsonism Relat Disord. 2014;20:873–7.

    Article  PubMed  Google Scholar 

  15. Ehrminger M, Latimier A, Pyatigorskaya N, et al. The coeruleus/subcoeruleus complex in idiopathic rapid eye movement sleep behaviour disorder. Brain. 2016;139:1180–8.

    Article  PubMed  Google Scholar 

  16. Cochrane CJ, Ebmeier KP. Diffusion tensor imaging in parkinsonian syndromes: a systematic review and meta-analysis. Neurology. 2013;80:857–64.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Unger MM, Belke M, Menzler K, et al. Diffusion tensor imaging in idiopathic REM sleep behavior disorder reveals microstructural changes in the brainstem, substantia nigra, olfactory region, and other brain regions. Sleep. 2010;33:767–73.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Boeve BF. REM sleep behavior disorder: updated review of the core features, the REM sleep behavior disorder-neurodegenerative disease association, evolving concepts, controversies, and future directions. Ann N Y Acad Sci. 2010;1184:15–54.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Fraigne JJ, Torontali ZA, Snow MB, Peever JH. REM sleep at its core—circuits, neurotransmitters, and pathophysiology. Front Neurol. 2015;6:123.

    Article  PubMed  PubMed Central  Google Scholar 

  20. De Marzi R, Seppi K, Hogl B, et al. Loss of dorsolateral nigral hyperintensity on 3.0 tesla susceptibility-weighted imaging in idiopathic rapid eye movement sleep behavior disorder. Ann Neurol. 2016;79:1026–30.

    Article  PubMed  Google Scholar 

  21. Frosini D, Cosottini M, Donatelli G, et al. Seven tesla MRI of the substantia nigra in patients with rapid eye movement sleep behavior disorder. Parkinsonism Relat Disord. 2017;43:105–9.

    Article  PubMed  Google Scholar 

  22. Soares DP, Law M. Magnetic resonance spectroscopy of the brain: review of metabolites and clinical applications. Clin Radiol. 2009;64:12–21.

    Article  PubMed  CAS  Google Scholar 

  23. Martin WR. MR spectroscopy in neurodegenerative disease. Mol Imaging Biol. 2007;9:196–203.

    Article  PubMed  Google Scholar 

  24. Watanabe H, Fukatsu H, Katsuno M, et al. Multiple regional 1H-MR spectroscopy in multiple system atrophy: NAA/Cr reduction in pontine base as a valuable diagnostic marker. J Neurol Neurosurg Psychiatry. 2004;75:103–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  25. Zhou B, Yuan F, He Z, Tan C. Application of proton magnetic resonance spectroscopy on substantia nigra metabolites in Parkinson’s disease. Brain Imaging Behav. 2014;8:97–101.

    Article  PubMed  Google Scholar 

  26. Loos C, Achten E, Santens P. Proton magnetic resonance spectroscopy in Alzheimer’s disease, a review. Acta Neurol Belg. 2010;110:291–8.

    PubMed  Google Scholar 

  27. Iranzo A, Santamaria J, Pujol J, Moreno A, Deus J, Tolosa E. Brainstem proton magnetic resonance spectroscopy in idopathic REM sleep behavior disorder. Sleep. 2002;25:867–70.

    Article  PubMed  Google Scholar 

  28. Ward RJ, Zucca FA, Duyn JH, Crichton RR, Zecca L. The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol. 2014;13:1045–60.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Martin WR, Wieler M, Gee M. Midbrain iron content in early Parkinson disease: a potential biomarker of disease status. Neurology. 2008;70:1411–7.

    Article  PubMed  CAS  Google Scholar 

  30. Pyatigorskaya N, Gaurav R, Arnaldi D, et al. MRI biomarkers to assess substantia nigra damage in idiopathic REM sleep behavior disorder. Sleep. 2017;40(11)

    Google Scholar 

  31. Berg D, Seppi K, Behnke S, et al. Enlarged substantia nigra hyperechogenicity and risk for Parkinson disease: a 37-month 3-center study of 1847 older persons. Arch Neurol. 2011;68:932–7.

    Article  PubMed  Google Scholar 

  32. Walter U, Niehaus L, Probst T, Benecke R, Meyer BU, Dressler D. Brain parenchyma sonography discriminates Parkinson’s disease and atypical parkinsonian syndromes. Neurology. 2003;60:74–7.

    Article  PubMed  CAS  Google Scholar 

  33. Walter U, Dressler D, Wolters A, Wittstock M, Greim B, Benecke R. Sonographic discrimination of dementia with Lewy bodies and Parkinson’s disease with dementia. J Neurol. 2006;253:448–54.

    Article  PubMed  Google Scholar 

  34. Walter U, Dressler D, Probst T, et al. Transcranial brain sonography findings in discriminating between parkinsonism and idiopathic Parkinson disease. Arch Neurol. 2007;64:1635–40.

    Article  PubMed  Google Scholar 

  35. Vilas D, Ispierto L, Alvarez R, et al. Clinical and imaging markers in premotor LRRK2 G2019S mutation carriers. Parkinsonism Relat Disord. 2015;21:1170–6.

    Article  PubMed  Google Scholar 

  36. Iranzo A, Lomena F, Stockner H, et al. Decreased striatal dopamine transporter uptake and substantia nigra hyperechogenicity as risk markers of synucleinopathy in patients with idiopathic rapid-eye-movement sleep behaviour disorder: a prospective study [corrected]. Lancet Neurol. 2010;9:1070–7.

    Article  PubMed  CAS  Google Scholar 

  37. Cerami C, Della Rosa PA, Magnani G, et al. Brain metabolic maps in mild cognitive impairment predict heterogeneity of progression to dementia. Neuroimage Clin. 2014;7:187–94.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Berg D, Merz B, Reiners K, Naumann M, Becker G. Five-year follow-up study of hyperechogenicity of the substantia nigra in Parkinson’s disease. Mov Disord. 2005;20:383–5.

    Article  PubMed  Google Scholar 

  39. Stockner H, Iranzo A, Seppi K, et al. Midbrain hyperechogenicity in idiopathic REM sleep behavior disorder. Mov Disord. 2009;24:1906–9.

    Article  PubMed  Google Scholar 

  40. Nirenberg MJ, Vaughan RA, Uhl GR, Kuhar MJ, Pickel VM. The dopamine transporter is localized to dendritic and axonal plasma membranes of nigrostriatal dopaminergic neurons. J Neurosci. 1996;16:436–47.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Brigo F, Turri G, Tinazzi M. 123I-FP-CIT SPECT in the differential diagnosis between dementia with Lewy bodies and other dementias. J Neurol Sci. 2015;359:161–71.

    Article  PubMed  CAS  Google Scholar 

  42. Booij J, Teune LK, Verberne HJ. The role of molecular imaging in the differential diagnosis of parkinsonism. Q J Nucl Med Mol Imaging. 2012;56:17–26.

    PubMed  CAS  Google Scholar 

  43. Eshuis SA, Jager PL, Maguire RP, Jonkman S, Dierckx RA, Leenders KL. Direct comparison of FP-CIT SPECT and F-DOPA PET in patients with Parkinson’s disease and healthy controls. Eur J Nucl Med Mol Imaging. 2009;36:454–62.

    Article  PubMed  CAS  Google Scholar 

  44. Cilia R, Marotta G, Benti R, Pezzoli G, Antonini A. Brain SPECT imaging in multiple system atrophy. J Neural Transm (Vienna). 2005;112:1635–45.

    Article  CAS  Google Scholar 

  45. Leenders KL, Salmon EP, Tyrrell P, et al. The nigrostriatal dopaminergic system assessed in vivo by positron emission tomography in healthy volunteer subjects and patients with Parkinson’s disease. Arch Neurol. 1990;47:1290–8.

    Article  PubMed  CAS  Google Scholar 

  46. Kortekaas R, Eshuis SA, Andringa G, Cools AR, Leenders KL. Motor behavior correlates with striatal [18F]-DOPA uptake in MPTP-lesioned primates. Neurochem Int. 2013;62:349–53.

    Article  PubMed  CAS  Google Scholar 

  47. Iranzo A, Valldeoriola F, Lomena F, et al. Serial dopamine transporter imaging of nigrostriatal function in patients with idiopathic rapid-eye-movement sleep behaviour disorder: a prospective study. Lancet Neurol. 2011;10:797–805.

    Article  PubMed  CAS  Google Scholar 

  48. Barber TR, Klein JC, Mackay CE, Hu MTM. Neuroimaging in pre-motor Parkinson’s disease. Neuroimage Clin. 2017;15:215–27.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Artzi M, Even-Sapir E, Lerman Shacham H, et al. DaT-SPECT assessment depicts dopamine depletion among asymptomatic G2019S LRRK2 mutation carriers. PLoS One. 2017;12:e0175424.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Eisensehr I, Linke R, Noachtar S, Schwarz J, Gildehaus FJ, Tatsch K. Reduced striatal dopamine transporters in idiopathic rapid eye movement sleep behaviour disorder. Comparison with Parkinson’s disease and controls. Brain. 2000;123(Pt 6):1155–60.

    Article  PubMed  Google Scholar 

  51. Stiasny-Kolster K, Doerr Y, Moller JC, et al. Combination of ‘idiopathic’ REM sleep behaviour disorder and olfactory dysfunction as possible indicator for alpha-synucleinopathy demonstrated by dopamine transporter FP-CIT-SPECT. Brain. 2005;128:126–37.

    Article  CAS  PubMed  Google Scholar 

  52. Kim YK, Yoon IY, Kim JM, et al. The implication of nigrostriatal dopaminergic degeneration in the pathogenesis of REM sleep behavior disorder. Eur J Neurol. 2010;17:487–92.

    Article  PubMed  CAS  Google Scholar 

  53. Heller J, Brcina N, Dogan I, et al. Brain imaging findings in idiopathic REM sleep behavior disorder (RBD)—a systematic review on potential biomarkers for neurodegeneration. Sleep Med Rev. 2017;34:23–33.

    Article  PubMed  Google Scholar 

  54. Arnaldi D, De Carli F, Picco A, et al. Nigro-caudate dopaminergic deafferentation: a marker of REM sleep behavior disorder? Neurobiol Aging. 2015;36:3300–5.

    Article  PubMed  Google Scholar 

  55. Rupprecht S, Walther B, Gudziol H, et al. Clinical markers of early nigrostriatal neurodegeneration in idiopathic rapid eye movement sleep behavior disorder. Sleep Med. 2013;14:1064–70.

    Article  PubMed  Google Scholar 

  56. Meles SK, Vadasz D, Renken RJ, et al. FDG PET, dopamine transporter SPECT, and olfaction: combining biomarkers in REM sleep behavior disorder. Mov Disord. 2017;32:1482–6.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  57. Doppler K, Jentschke HM, Schulmeyer L, et al. Dermal phospho-alpha-synuclein deposits confirm REM sleep behaviour disorder as prodromal Parkinson’s disease. Acta Neuropathol. 2017;133:535–45.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  58. Stokholm MG, Iranzo A, Ostergaard K, et al. Assessment of neuroinflammation in patients with idiopathic rapid-eye-movement sleep behaviour disorder: a case-control study. Lancet Neurol. 2017;16:789–96.

    Article  PubMed  Google Scholar 

  59. Iranzo A, Santamaria J, Valldeoriola F, et al. Dopamine transporter imaging deficit predicts early transition to synucleinopathy in idiopathic rapid eye movement sleep behavior disorder. Ann Neurol. 2017;82:419–28.

    Article  PubMed  CAS  Google Scholar 

  60. Bauckneht M, Chincarini A, De Carli F, et al. Presynaptic dopaminergic neuroimaging in REM sleep behavior disorder: a systematic review and meta-analysis. Sleep Med Rev. 2018.

    Google Scholar 

  61. van der Zande JJ, Booij J, Scheltens P, Raijmakers PG, Lemstra AW. [(123)]FP-CIT SPECT scans initially rated as normal became abnormal over time in patients with probable dementia with Lewy bodies. Eur J Nucl Med Mol Imaging. 2016;43:1060–6.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Shimizu S, Hirose D, Namioka N, et al. Correlation between clinical symptoms and striatal DAT uptake in patients with DLB. Ann Nucl Med. 2017;31:390–8.

    Article  PubMed  Google Scholar 

  63. Farde L, Ehrin E, Eriksson L, et al. Substituted benzamides as ligands for visualization of dopamine receptor binding in the human brain by positron emission tomography. Proc Natl Acad Sci U S A. 1985;82:3863–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  64. Kung HF, Alavi A, Chang W, et al. In vivo SPECT imaging of CNS D-2 dopamine receptors: initial studies with iodine-123-IBZM in humans. J Nucl Med. 1990;31:573–9.

    PubMed  CAS  Google Scholar 

  65. Antonini A, Leenders KL, Vontobel P, et al. Complementary PET studies of striatal neuronal function in the differential diagnosis between multiple system atrophy and Parkinson’s disease. Brain. 1997;120(Pt 12):2187–95.

    Article  PubMed  Google Scholar 

  66. Brooks DJ, Ibanez V, Sawle GV, et al. Striatal D2 receptor status in patients with Parkinson’s disease, striatonigral degeneration, and progressive supranuclear palsy, measured with 11C-raclopride and positron emission tomography. Ann Neurol. 1992;31:184–92.

    Article  PubMed  CAS  Google Scholar 

  67. Schwarz J, Tatsch K, Arnold G, et al. 123I-iodobenzamide-SPECT in 83 patients with de novo parkinsonism. Neurology. 1993;43:S17–20.

    PubMed  CAS  Google Scholar 

  68. Schwarz J, Antonini A, Tatsch K, Kirsch CM, Oertel WH, Leenders KL. Comparison of 123I-IBZM SPECT and 11C-raclopride PET findings in patients with parkinsonism. Nucl Med Commun. 1994;15:806–13.

    Article  PubMed  CAS  Google Scholar 

  69. Kim YJ, Ichise M, Ballinger JR, et al. Combination of dopamine transporter and D2 receptor SPECT in the diagnostic evaluation of PD, MSA, and PSP. Mov Disord. 2002;17:303–12.

    Article  PubMed  Google Scholar 

  70. Knudsen GM, Karlsborg M, Thomsen G, et al. Imaging of dopamine transporters and D2 receptors in patients with Parkinson’s disease and multiple system atrophy. Eur J Nucl Med Mol Imaging. 2004;31:1631–8.

    Article  PubMed  CAS  Google Scholar 

  71. Roselli F, Pisciotta NM, Pennelli M, et al. Midbrain SERT in degenerative parkinsonisms: a 123I-FP-CIT SPECT study. Mov Disord. 2010;25:1853–9.

    Article  PubMed  Google Scholar 

  72. Joling M, Vriend C, van den Heuvel OA, et al. Analysis of extrastriatal 123I-FP-CIT binding contributes to the differential diagnosis of parkinsonian diseases. J Nucl Med. 2017;58:1117–23.

    Article  PubMed  Google Scholar 

  73. Scherfler C, Seppi K, Donnemiller E, et al. Voxel-wise analysis of [123I]beta-CIT SPECT differentiates the Parkinson variant of multiple system atrophy from idiopathic Parkinson’s disease. Brain. 2005;128:1605–12.

    Article  PubMed  Google Scholar 

  74. Pavese N, Simpson BS, Metta V, Ramlackhansingh A, Chaudhuri KR, Brooks DJ. [18F]FDOPA uptake in the raphe nuclei complex reflects serotonin transporter availability. A combined [18F]FDOPA and [11C]DASB PET study in Parkinson’s disease. NeuroImage. 2012;59:1080–4.

    Article  PubMed  CAS  Google Scholar 

  75. Arnaldi D, Fama F, De Carli F, et al. The role of the serotonergic system in REM sleep behavior disorder. Sleep. 2015;38:1505–9.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Suwijn SR, Berendse HW, Verschuur CV, de Bie RM, Booij J. Serotonin transporter availability in early stage Parkinson’s disease and multiple system atrophy. ISRN Neurol. 2014;2014:345132.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  77. Strafella AP, Bohnen NI, Perlmutter JS, et al. Molecular imaging to track Parkinson’s disease and atypical parkinsonisms: new imaging frontiers. Mov Disord. 2017;32:181–92.

    Article  PubMed  Google Scholar 

  78. Guttman M, Boileau I, Warsh J, et al. Brain serotonin transporter binding in non-depressed patients with Parkinson’s disease. Eur J Neurol. 2007;14:523–8.

    Article  PubMed  CAS  Google Scholar 

  79. Albin RL, Koeppe RA, Bohnen NI, Wernette K, Kilbourn MA, Frey KA. Spared caudal brainstem SERT binding in early Parkinson’s disease. J Cereb Blood Flow Metab. 2008;28:441–4.

    Article  PubMed  CAS  Google Scholar 

  80. Strecker K, Wegner F, Hesse S, et al. Preserved serotonin transporter binding in de novo Parkinson’s disease: negative correlation with the dopamine transporter. J Neurol. 2011;258:19–26.

    Article  PubMed  CAS  Google Scholar 

  81. Kotagal V, Albin RL, Muller ML, et al. Symptoms of rapid eye movement sleep behavior disorder are associated with cholinergic denervation in Parkinson disease. Ann Neurol. 2012;71:560–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  82. Ehrt U, Broich K, Larsen JP, Ballard C, Aarsland D. Use of drugs with anticholinergic effect and impact on cognition in Parkinson’s disease: a cohort study. J Neurol Neurosurg Psychiatry. 2010;81:160–5.

    Article  PubMed  Google Scholar 

  83. Roy R, Niccolini F, Pagano G, Politis M. Cholinergic imaging in dementia spectrum disorders. Eur J Nucl Med Mol Imaging. 2016;43:1376–86.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  84. Isaias IU, Spiegel J, Brumberg J, et al. Nicotinic acetylcholine receptor density in cognitively intact subjects at an early stage of Parkinson’s disease. Front Aging Neurosci. 2014;6:213.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  85. Shimada H, Hirano S, Shinotoh H, et al. Mapping of brain acetylcholinesterase alterations in Lewy body disease by PET. Neurology. 2009;73:273–8.

    Article  PubMed  CAS  Google Scholar 

  86. Hilker R, Thomas AV, Klein JC, et al. Dementia in Parkinson disease: functional imaging of cholinergic and dopaminergic pathways. Neurology. 2005;65:1716–22.

    Article  PubMed  CAS  Google Scholar 

  87. Klein JC, Eggers C, Kalbe E, et al. Neurotransmitter changes in dementia with Lewy bodies and Parkinson disease dementia in vivo. Neurology. 2010;74:885–92.

    Article  PubMed  CAS  Google Scholar 

  88. Shinotoh H, Namba H, Yamaguchi M, et al. Positron emission tomographic measurement of acetylcholinesterase activity reveals differential loss of ascending cholinergic systems in Parkinson’s disease and progressive supranuclear palsy. Ann Neurol. 1999;46:62–9.

    Article  PubMed  CAS  Google Scholar 

  89. Mazere J, Lamare F, Allard M, Fernandez P, Mayo W. 123I-iodobenzovesamicol SPECT imaging of cholinergic systems in dementia with Lewy bodies. J Nucl Med. 2017;58:123–8.

    Article  PubMed  CAS  Google Scholar 

  90. Gilman S, Koeppe RA, Chervin RD, et al. REM sleep behavior disorder is related to striatal monoaminergic deficit in MSA. Neurology. 2003;61:29–34.

    Article  PubMed  CAS  Google Scholar 

  91. Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24:197–211.

    Article  PubMed  Google Scholar 

  92. Kim JS, Park HE, Oh YS, et al. Orthostatic hypotension and cardiac sympathetic denervation in Parkinson disease patients with REM sleep behavioral disorder. J Neurol Sci. 2016;362:59–63.

    Article  PubMed  Google Scholar 

  93. Fujishiro H, Nakamura S, Kitazawa M, Sato K, Iseki E. Early detection of dementia with Lewy bodies in patients with amnestic mild cognitive impairment using 123I-MIBG cardiac scintigraphy. J Neurol Sci. 2012;315:115–9.

    Article  PubMed  Google Scholar 

  94. Nomura T, Inoue Y, Hogl B, et al. Relationship between (123)I-MIBG scintigrams and REM sleep behavior disorder in Parkinson’s disease. Parkinsonism Relat Disord. 2010;16:683–5.

    Article  PubMed  Google Scholar 

  95. Brooks DJ. Imaging non-dopaminergic function in Parkinson’s disease. Mol Imaging Biol. 2007;9:217–22.

    Article  PubMed  Google Scholar 

  96. Dwamena BA, Zempel S, Klopper JF, Van Heerden B, Wieland D, Shapiro B. Brain uptake of iodine-131 metaiodobenzylguanidine following therapy of malignant pheochromocytoma. Clin Nucl Med. 1998;23:441–5.

    Article  PubMed  CAS  Google Scholar 

  97. Isaias IU, Marotta G, Pezzoli G, et al. Enhanced catecholamine transporter binding in the locus coeruleus of patients with early Parkinson disease. BMC Neurol. 2011;11:88.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Pavese N, Rivero-Bosch M, Lewis SJ, Whone AL, Brooks DJ. Progression of monoaminergic dysfunction in Parkinson’s disease: a longitudinal 18F-dopa PET study. NeuroImage. 2011;56:1463–8.

    Article  PubMed  CAS  Google Scholar 

  99. Remy P, Doder M, Lees A, Turjanski N, Brooks D. Depression in Parkinson’s disease: loss of dopamine and noradrenaline innervation in the limbic system. Brain. 2005;128:1314–22.

    Article  PubMed  Google Scholar 

  100. Sommerauer M, Fedorova TD, Hansen AK, et al. Evaluation of the noradrenergic system in Parkinson’s disease: an 11C-MeNER PET and neuromelanin MRI study. Brain. 2018;141:496–504.

    Article  PubMed  Google Scholar 

  101. Seeley WW, Crawford RK, Zhou J, Miller BL, Greicius MD. Neurodegenerative diseases target large-scale human brain networks. Neuron. 2009;62:42–52.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  102. Friston KJ. Functional and effective connectivity: a review. Brain Connect. 2011;1:13–36.

    Article  PubMed  Google Scholar 

  103. Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci. 2007;8:700–11.

    Article  PubMed  CAS  Google Scholar 

  104. Ellmore TM, Castriotta RJ, Hendley KL, et al. Altered nigrostriatal and nigrocortical functional connectivity in rapid eye movement sleep behavior disorder. Sleep. 2013;36:1885–92.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Rolinski M, Griffanti L, Piccini P, et al. Basal ganglia dysfunction in idiopathic REM sleep behaviour disorder parallels that in early Parkinson’s disease. Brain. 2016;139:2224–34.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Dayan E, Browner N. Alterations in striato-thalamo-pallidal intrinsic functional connectivity as a prodrome of Parkinson’s disease. Neuroimage Clin. 2017;16:313–8.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Gallea C, Ewenczyk C, Degos B, et al. Pedunculopontine network dysfunction in Parkinson’s disease with postural control and sleep disorders. Mov Disord. 2017;32:693–704.

    Article  PubMed  Google Scholar 

  108. Alavi A, Reivich M. Guest editorial: the conception of FDG-PET imaging. Semin Nucl Med. 2002;32:2–5.

    Article  PubMed  Google Scholar 

  109. Fox PT, Raichle ME. Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci U S A. 1986;83:1140–4.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  110. Fox PT, Raichle ME, Mintun MA, Dence C. Nonoxidative glucose consumption during focal physiologic neural activity. Science. 1988;241:462–4.

    Article  PubMed  CAS  Google Scholar 

  111. Ko JH, Lerner RP, Eidelberg D. Effects of levodopa on regional cerebral metabolism and blood flow. Mov Disord. 2015;30:54–63.

    Article  PubMed  CAS  Google Scholar 

  112. Peng S, Eidelberg D, Ma Y. Brain network markers of abnormal cerebral glucose metabolism and blood flow in Parkinson’s disease. Neurosci Bull. 2014;30:823–37.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  113. Lin TP, Carbon M, Tang C, et al. Metabolic correlates of subthalamic nucleus activity in Parkinson’s disease. Brain. 2008;131:1373–80.

    Article  PubMed  Google Scholar 

  114. Gonzalez-Redondo R, Garcia-Garcia D, Clavero P, et al. Grey matter hypometabolism and atrophy in Parkinson’s disease with cognitive impairment: a two-step process. Brain. 2014;137:2356–67.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Garcia-Garcia D, Clavero P, Gasca Salas C, et al. Posterior parietooccipital hypometabolism may differentiate mild cognitive impairment from dementia in Parkinson’s disease. Eur J Nucl Med Mol Imaging. 2012;39:1767–77.

    Article  PubMed  Google Scholar 

  116. Meles SK, Teune LK, de Jong BM, Dierckx RA, Leenders KL. Metabolic imaging in Parkinson disease. J Nucl Med. 2017;58:23–8.

    Article  PubMed  CAS  Google Scholar 

  117. Teune LK, Bartels AL, de Jong BM, et al. Typical cerebral metabolic patterns in neurodegenerative brain diseases. Mov Disord. 2010;25:2395–404.

    Article  PubMed  Google Scholar 

  118. Ko JH, Lee CS, Eidelberg D. Metabolic network expression in parkinsonism: clinical and dopaminergic correlations. J Cereb Blood Flow Metab. 2017;37(2):683–93.

    Article  PubMed  CAS  Google Scholar 

  119. Vendette M, Gagnon JF, Soucy JP, et al. Brain perfusion and markers of neurodegeneration in rapid eye movement sleep behavior disorder. Mov Disord. 2011;26:1717–24.

    Article  PubMed  Google Scholar 

  120. Caselli RJ, Chen K, Bandy D, et al. A preliminary fluorodeoxyglucose positron emission tomography study in healthy adults reporting dream-enactment behavior. Sleep. 2006;29:927–33.

    Article  PubMed  Google Scholar 

  121. Sakurai H, Hanyu H, Inoue Y, et al. Longitudinal study of regional cerebral blood flow in elderly patients with idiopathic rapid eye movement sleep behavior disorder. Geriatr Gerontol Int. 2014;14:115–20.

    Article  PubMed  Google Scholar 

  122. Hanyu H, Inoue Y, Sakurai H, et al. Regional cerebral blood flow changes in patients with idiopathic REM sleep behavior disorder. Eur J Neurol. 2011;18:784–8.

    Article  PubMed  CAS  Google Scholar 

  123. Vendette M, Montplaisir J, Gosselin N, et al. Brain perfusion anomalies in rapid eye movement sleep behavior disorder with mild cognitive impairment. Mov Disord. 2012;27:1255–61.

    Article  PubMed  Google Scholar 

  124. Dang-Vu TT, Gagnon JF, Vendette M, Soucy JP, Postuma RB, Montplaisir J. Hippocampal perfusion predicts impending neurodegeneration in REM sleep behavior disorder. Neurology. 2012;79:2302–6.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Minoshima S, Frey KA, Koeppe RA, Foster NL, Kuhl DE. A diagnostic approach in Alzheimer’s disease using three-dimensional stereotactic surface projections of fluorine-18-FDG PET. J Nucl Med. 1995;36:1238–48.

    PubMed  CAS  Google Scholar 

  126. Carbon M, Reetz K, Ghilardi MF, Dhawan V, Eidelberg D. Early Parkinson’s disease: longitudinal changes in brain activity during sequence learning. Neurobiol Dis. 2010;37:455–60.

    Article  PubMed  Google Scholar 

  127. Albin RL, Young AB, Penney JB. The functional anatomy of basal ganglia disorders. Trends Neurosci. 1989;12:366–75.

    Article  PubMed  CAS  Google Scholar 

  128. Fujishiro H, Iseki E, Murayama N, et al. Diffuse occipital hypometabolism on [18 F]-FDG PET scans in patients with idiopathic REM sleep behavior disorder: prodromal dementia with Lewy bodies? Psychogeriatrics. 2010;10:144–52.

    Article  PubMed  Google Scholar 

  129. Fujishiro H, Iseki E, Kasanuki K, et al. A follow up study of non-demented patients with primary visual cortical hypometabolism: prodromal dementia with Lewy bodies. J Neurol Sci. 2013;334:48–54.

    Article  PubMed  CAS  Google Scholar 

  130. Ge J, Wu P, Peng S, et al. Assessing cerebral glucose metabolism in patients with idiopathic rapid eye movement sleep behavior disorder. J Cereb Blood Flow Metab. 2015;35:2062–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  131. Eidelberg D. Metabolic brain networks in neurodegenerative disorders: a functional imaging approach. Trends Neurosci. 2009;32:548–57.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  132. Niethammer M, Eidelberg D. Metabolic brain networks in translational neurology: concepts and applications. Ann Neurol. 2012;72(5):635–47.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Spetsieris PG, Eidelberg D. Scaled subprofile modeling of resting state imaging data in Parkinson’s disease: methodological issues. NeuroImage. 2011;54:2899–914.

    Article  PubMed  Google Scholar 

  134. Ma Y, Tang C, Spetsieris PG, Dhawan V, Eidelberg D. Abnormal metabolic network activity in Parkinson’s disease: test-retest reproducibility. J Cereb Blood Flow Metab. 2007;27:597–605.

    Article  PubMed  Google Scholar 

  135. Teune LK, Renken RJ, Mudali D, et al. Validation of parkinsonian disease-related metabolic brain patterns. Mov Disord. 2013;28:547–51.

    Article  PubMed  CAS  Google Scholar 

  136. Teune LK, Renken RJ, de Jong BM, et al. Parkinson’s disease-related perfusion and glucose metabolic brain patterns identified with PCASL-MRI and FDG-PET imaging. Neuroimage Clin. 2014;5:240–4.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Wu P, Wang J, Peng S, et al. Metabolic brain network in the chinese patients with Parkinson’s disease based on 18F-FDG PET imaging. Parkinsonism Relat Disord. 2013;19:622–7.

    Article  PubMed  Google Scholar 

  138. Tomse P, Jensterle L, Grmek M, et al. Abnormal metabolic brain network associated with Parkinson’s disease: replication on a new European sample. Neuroradiology. 2017;59:507–15.

    Article  PubMed  Google Scholar 

  139. Tang CC, Poston KL, Eckert T, et al. Differential diagnosis of parkinsonism: a metabolic imaging study using pattern analysis. Lancet Neurol. 2010;9:149–58.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Tripathi M, Tang CC, Feigin A, et al. Automated differential diagnosis of early parkinsonism using metabolic brain networks: a validation study. J Nucl Med. 2016;57, 60(1):–6.

    Article  PubMed  CAS  Google Scholar 

  141. Habeck C, Foster NL, Perneczky R, et al. Multivariate and univariate neuroimaging biomarkers of Alzheimer’s disease. NeuroImage. 2008;40:1503–15.

    Article  PubMed  Google Scholar 

  142. Habeck C, Stern Y, Alzheimer’s Disease Neuroimaging Initiative. Multivariate data analysis for neuroimaging data: overview and application to Alzheimer’s disease. Cell Biochem Biophys. 2010;58:53–67.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  143. Kaasinen V, Maguire RP, Hundemer HP, Leenders KL. Corticostriatal covariance patterns of 6-[18F]fluoro-L-dopa and [18F]fluorodeoxyglucose PET in Parkinson’s disease. J Neurol. 2006;253:340–8.

    Article  PubMed  CAS  Google Scholar 

  144. Huang C, Tang C, Feigin A, et al. Changes in network activity with the progression of Parkinson’s disease. Brain. 2007;130:1834–46.

    Article  PubMed  Google Scholar 

  145. Tang CC, Poston KL, Dhawan V, Eidelberg D. Abnormalities in metabolic network activity precede the onset of motor symptoms in Parkinson’s disease. J Neurosci. 2010;30:1049–56.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  146. Holtbernd F, Gagnon JF, Postuma RB, et al. Abnormal metabolic network activity in REM sleep behavior disorder. Neurology. 2014;82:620–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  147. Wu P, Yu H, Peng S, et al. Consistent abnormalities in metabolic network activity in idiopathic rapid eye movement sleep behaviour disorder. Brain. 2014;137:3122–8.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Raichle ME, Snyder AZ. A default mode of brain function: a brief history of an evolving idea. NeuroImage. 2007;37:1083–90; discussion 1097–9.

    Article  PubMed  Google Scholar 

  149. Mahlknecht P, Iranzo A, Hogl B, et al. Olfactory dysfunction predicts early transition to a Lewy body disease in idiopathic RBD. Neurology. 2015;84:654–8.

    Article  PubMed  Google Scholar 

  150. Iranzo A, Serradell M, Vilaseca I, et al. Longitudinal assessment of olfactory function in idiopathic REM sleep behavior disorder. Parkinsonism Relat Disord. 2013;19:600–4.

    Article  PubMed  Google Scholar 

  151. Stoffers D, Booij J, Bosscher L, Winogrodzka A, Wolters EC, Berendse HW. Early-stage [123I]beta-CIT SPECT and long-term clinical follow-up in patients with an initial diagnosis of Parkinson’s disease. Eur J Nucl Med Mol Imaging. 2005;32:689–95.

    Article  PubMed  Google Scholar 

  152. Meles SK, Renken RJ, Janzen A, et al. The metabolic pattern of idiopathic REM sleep behavior disorder reflects early-stage Parkinson’s disease. J Nucl Med. 2018.

    Google Scholar 

  153. Booij J, Tijssen MAJ, Berendse W. Clinical applications of [123I]FP-CIT SPECT imaging. In: Dierckx RAJO, Otte A, de Vries EFJ, van Waarde A, Leenders KL, editors. PET and SPECT in neurology. Berlin/Heidelberg: Springer; 2014. p. 719.

    Google Scholar 

  154. Teune LK, Leender KL. Molecular imaging in Parkinson’s disease. In: Gründer G, editor. Molecular imaging in the clinical neurosciences, Neuromethods, vol. 71. New York: Springer; 2012. p. 359–75.

    Chapter  Google Scholar 

Download references

Acknowledgements

We thank the Dutch “Stichting Parkinson Fonds” and the German “Parkinson Fonds Deutschland” for financial support.

W.H. Oertel, MD, PhD is a Hertie Senior Research Professor, supported by the Charitable Hertie Foundation, Frankfurt/Main, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanne K. Meles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kogan, R.V., Meles, S.K., Leenders, K.L., Reetz, K., Oertel, W.H.O. (2019). Brain Imaging in RBD. In: Schenck, C., Högl, B., Videnovic, A. (eds) Rapid-Eye-Movement Sleep Behavior Disorder. Springer, Cham. https://doi.org/10.1007/978-3-319-90152-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90152-7_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90151-0

  • Online ISBN: 978-3-319-90152-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics