Skip to main content

Advertisement

Log in

Epigenetic Mechanisms Involved in Inflammaging-Associated Hypertension

  • Hypertension and Obesity (E Reisin, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review summarizes the involvement of inflammaging in vascular damage with focus on the epigenetic mechanisms by which inflammaging-induced hypertension is triggered.

Recent Findings

Inflammaging in hypertension is a complex condition associated with the production of inflammatory mediators by the immune cells, enhancement of oxidative stress, and tissue remodeling in vascular smooth muscle cells and endothelial cells. Cellular processes are numerous, including inflammasome assembly and cell senescence which may involve mitochondrial dysfunction, autophagy, DNA damage response, dysbiosis, and many others. More recently, a series of noncoding RNAs, mainly microRNAs, have been described as possessing epigenetic actions on the regulation of inflammasome-related hypertension, emerging as a promising therapeutic strategy.

Summary

Although there are a variety of pharmacological agents that effectively regulate inflammaging-related hypertension, a deeper understanding of the epigenetic events behind the control of vessel deterioration is needed for the treatment or even to prevent the disease onset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Stanaway JD, Reiner RC, Blacker BF, Goldberg EM, Khalil IA, Troeger CE, et al. The global burden of typhoid and paratyphoid fevers: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Infect Dis. 2019;19:369–81. https://doi.org/10.1016/S1473-3099(18)30685-6.

    Article  Google Scholar 

  2. Androulakis ES, Tousalis D, Papageorgiou N, Tsioufis C, Kallikazaros I, Stefanadis C. Essential hypertension: is there a role for inflammatory mechanisms? Cardiol Rev. 2009;17:216–21. https://doi.org/10.1097/CRD.0b013e3181b18e03.

    Article  PubMed  Google Scholar 

  3. Williams B, Mancia G, Spiering W, Rosei EA, Azizi M, Burnier M, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J. 2018;39:3021–104. https://doi.org/10.1093/eurheartj/ehy339.

    Article  PubMed  Google Scholar 

  4. Reilly MP, Rader DJ. The metabolic syndrome: more than the sum of its parts? Circ. 2003;108:1546–51. https://doi.org/10.1161/01.CIR.0000088846.10655.E0.

    Article  Google Scholar 

  5. Prado NJ, Ferder L, Manucha W, Diez ER. Anti-inflammatory effects of melatonin in obesity and hypertension. Curr Hypertens Rep. 2018;20:45. https://doi.org/10.1007/s11906-018-0842-6.

    Article  CAS  PubMed  Google Scholar 

  6. Russo I. The prothrombotic tendency in metabolic syndrome: focus on the potential mechanisms involved in impaired hemostasis and fibrinolytic balance. Scientifica (Cairo). 2012;2012:1–17. https://doi.org/10.6064/2012/525374.

    Article  Google Scholar 

  7. Kallistratos MS, Poulimenos LE, Manolis AJ. Atrial fibrillation and arterial hypertension. Pharmacological Res. 2018;128:322–6. https://doi.org/10.1016/j.phrs.2017.10.007.

    Article  CAS  Google Scholar 

  8. Katsimardou A, Imprialos K, Stavropoulos K, Sachinidis A, Doumas M, Athyros V. Hypertension in metabolic syndrome: novel insights. Curr Hypertens Rev. 2019;16:12–8. https://doi.org/10.2174/1573402115666190415161813.

    Article  Google Scholar 

  9. Mancia G, Bombelli M, Corrao G, Facchetti R, Madotto F, Giannattasio C, et al. Metabolic syndrome in the pressioni arteriose monitorate e loro associazioni (PAMELA) study: daily life blood pressure, cardiac damage, and prognosis. Hypertens. 2007;49:40–7. https://doi.org/10.1161/01.HYP.0000251933.22091.24.

    Article  CAS  Google Scholar 

  10. Pannier B, Dé Rique Thomas F, Bean K, Jé B, Benetos A, Guize L. The metabolic syndrome: similar deleterious impact on all-cause mortality in hypertensive and normotensive subjects. J Hypertens. 2008;26:1223–1228. https://doi.org/10.1097/HJH.0b013e3282fd9936.

  11. Wang C, Yuan Y, Zheng M, Pan A, Wang M, Zhao M, et al. Association of age of onset of hypertension with cardiovascular diseases and mortality. J Am Coll Cardiol. 2020;75:2921–30. https://doi.org/10.1016/j.jacc.2020.04.038.

    Article  PubMed  Google Scholar 

  12. • Al Ghorani H, Götzinger F, Böhm M, Mahfoud F. Arterial hypertension – clinical trials update 2021. Nutr, Metabol Cardiov Dis. 2022;32:21–31. https://doi.org/10.1016/j.numecd.2021.09.007. This review summarizes relevant clinical trials related to age at hypertension onset and risk factors for cardiovascular disease in the future.

  13. Marra AM, Bossone E, Salzano A, D’Assante R, Monaco F, Ferrara F, et al. Biomarkers in pulmonary hypertension. Heart Fail Clin. 2018;14:393–402. https://doi.org/10.1016/j.hfc.2018.03.005.

    Article  PubMed  Google Scholar 

  14. Colli LG, Belardin LB, Echem C, Akamine EH, Antoniassi MP, Andretta RR, et al. Systemic arterial hypertension leads to decreased semen quality and alterations in the testicular microcirculation in rats. Scientific Rep. 2019;9:11047. https://doi.org/10.1038/s41598-019-47157-w.

    Article  CAS  Google Scholar 

  15. Gonzaga C, Bertolami A, Bertolami M, Amodeo C, Calhoun D. Obstructive sleep apnea, hypertension and cardiovascular diseases. J Hum Hypertens. 2015;29:705–12. https://doi.org/10.1038/jhh.2015.15.

    Article  CAS  PubMed  Google Scholar 

  16. Varvarousis D, Kallistratos M, Poulimenos L, Triantafyllis A, Tsinivizov P, Giannakopoulos A, et al. Cardiac arrhythmias in arterial hypertension. J Clin Hypertens. 2020;22:1371–8. https://doi.org/10.1111/jch.13989.

    Article  Google Scholar 

  17. Buonacera A, Stancanelli B, Malatino L. Stroke and hypertension: an appraisal from pathophysiology to clinical practice. Curr Vasc Pharmacol. 2017;17:72–84. https://doi.org/10.2174/1570161115666171116151051.

    Article  CAS  Google Scholar 

  18. Escobar E. Hypertension and coronary heart disease. J Hum Hypertens. 2002;16:61–3. https://doi.org/10.1038/sj/jhh/1001345.

    Article  Google Scholar 

  19. Duca L, Blaise S, Romier B, Laffargue M, Gayral S, el Btaouri H, et al. Matrix ageing and vascular impacts: focus on elastin fragmentation. Cardiovasc Res. 2016;110:298–308. https://doi.org/10.1093/cvr/cvw061.

    Article  CAS  PubMed  Google Scholar 

  20. Cannatà A, Camparini L, Sinagra G, Giacca M, Loffredo FS. Pathways for salvage and protection of the heart under stress: novel routes for cardiac rejuvenation. Cardiovasc Res. 2016;111:142–53. https://doi.org/10.1093/cvr/cvw106.

    Article  CAS  PubMed  Google Scholar 

  21. Cencioni C, Spallotta F, Martelli F, Valente S, Mai A, Zeiher AM, et al. Oxidative stress and epigenetic regulation in ageing and age-related diseases. Int J Mol Sci. 2013;14:17643–63. https://doi.org/10.3390/ijms140917643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nosalski R, Guzik TJ. Perivascular adipose tissue inflammation in vascular disease. Br J Pharmacol. 2017;174:3496–513. https://doi.org/10.1111/bph.13705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ungvari Z, Tarantini S, Donato AJ, Galvan V, Csiszar A. Mechanisms of vascular aging. Circ Res. 2018;123:849–67. https://doi.org/10.1161/CIRCRESAHA.118.311378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tchalla AE, Wellenius GA, Travison TG, Gagnon M, Iloputaife I, Dantoine T, et al. Circulating vascular cell adhesion molecule-1 is associated with cerebral blood flow dysregulation, mobility impairment, and falls in older adults. Hypertens. 2015;66:340–6. https://doi.org/10.1161/HYPERTENSIONAHA.115.05180.

    Article  CAS  Google Scholar 

  25. Laurent S, Boutouyrie P. The structural factor of hypertension: large and small artery alterations. Circ Res. 2015;116:1007–21. https://doi.org/10.1161/CIRCRESAHA.116.303596.

    Article  CAS  PubMed  Google Scholar 

  26. Laurent S, Briet M, Boutouyrie P. Large and small artery cross-talk and recent morbidity- mortality trials in hypertension. Hypertens. 2009;54:388–92. https://doi.org/10.1161/HYPERTENSIONAHA.109.133116.

    Article  CAS  Google Scholar 

  27. Donato AJ, Eskurza I, Silver AE, Levy AS, Pierce GL, Gates PE, et al. Direct evidence of endothelial oxidative stress with aging in humans: relation to impaired endothelium-dependent dilation and upregulation of nuclear factor-κB. Circ Res. 2007;100:1659–66. https://doi.org/10.1161/01.RES.0000269183.13937.e8.

    Article  CAS  PubMed  Google Scholar 

  28. • Mengozzi A, Nicola RP, Pugliese R, Chiriacò M, Masi S, Virdis A, et al. Microvascular ageing links metabolic disease to age-related disorders: the role of oxidative stress and inflammation in promoting microvascular dysfunction. J Cardio Pharmacol. 2021;78:S78–87. https://doi.org/10.1097/FJC.0000000000001109. (This review explores the relationship between microvascular dysfunction and aging process on metabolic disorders induced by inflammation and oxidative stress.)

    Article  CAS  Google Scholar 

  29. Vanhoutte PM, Shimokawa H, Feletou M, Tang EHC. Endothelial dysfunction and vascular disease – a 30th anniversary update. Acta Physiol. 2017;219:22–96. https://doi.org/10.1111/apha.12646.

    Article  CAS  Google Scholar 

  30. Donato AJ, Gano LB, Eskurza I, Silver AE, Gates PE, Jablonski K, et al. Vascular endothelial dysfunction with aging: endothelin-1 and endothelial nitric oxide synthase. Am J Physiol Heart Circ Physiol. 2009;297:425–32. https://doi.org/10.1152/ajpheart.00689.2008.

    Article  CAS  Google Scholar 

  31. Ganz P, Vita JA. Testing endothelial vasomotor function: nitric oxide, a multipotent molecule. Circulation. 2003;108:2049–53. https://doi.org/10.1161/01.CIR.0000089507.19675.F9.

    Article  PubMed  Google Scholar 

  32. Csiszar A, Ungvari Z, Edwards JG, Kaminski P, Wolin MS, Koller A, et al. Aging-induced phenotypic changes and oxidative stress impair coronary arteriolar function. Circ Res. 2002;90:1159–66. https://doi.org/10.1161/01.RES.0000020401.61826.EA.

    Article  CAS  PubMed  Google Scholar 

  33. Sehgel NL, Sun Z, Hong Z, Hunter WC, Hill MA, Vatner DE, et al. Augmented vascular smooth muscle cell stiffness and adhesion when hypertension is superimposed on aging. Hypertens. 2015;65:370–7. https://doi.org/10.1161/HYPERTENSIONAHA.114.04456.

    Article  CAS  Google Scholar 

  34. Wirth A, Wang S, Takefuji M, Tang C, Althoff TF, Schweda F, et al. Age-dependent blood pressure elevation is due to increased vascular smooth muscle tone mediated by G-protein signalling. Cardiovasc Res. 2016;109:131–40. https://doi.org/10.1093/cvr/cvv249.

    Article  CAS  PubMed  Google Scholar 

  35. Morrell NW, Bloch DB, ten Dijke P, Goumans MJTH, Hata A, Smith J, et al. Targeting BMP signaling in cardiovascular disease and anaemia. Nat Rev Cardiol. 2016;13:106–20. https://doi.org/10.1038/nrcardio.2015.156.

    Article  CAS  PubMed  Google Scholar 

  36. Mikolajczyk TP, Nosalski R, Szczepaniak P, Budzyn K, Osmenda G, Skiba D, et al. Role of chemokine RANTES in the regulation of perivascular inflammation, T-cell accumulation, and vascular dysfunction in hypertension. FASEB J. 2016;30:1987–99. https://doi.org/10.1096/fj.201500088R.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Merino D, Villar AV, García R, Tramullas M, Ruiz L, Ribas C, et al. BMP-7 attenuates left ventricular remodeling under pressure overload and facilitates reverse remodeling and functional recovery. Cardiovasc Res. 2016;110:331–45. https://doi.org/10.1093/cvr/cvw076.

    Article  CAS  PubMed  Google Scholar 

  38. Wu J, Saleh MA, Kirabo A, Itani HA, Montaniel KRC, Xiao L, et al. Immune activation caused by vascular oxidation promotes fibrosis and hypertension. J Clin Investig. 2016;126:50–67. https://doi.org/10.1172/JCI80761.

    Article  PubMed  Google Scholar 

  39. Schramm A, Matusik P, Osmenda G, Guzik TJ. Targeting NADPH oxidases in vascular pharmacology. Vasc Pharmacol. 2012;56:216–31. https://doi.org/10.1016/j.vph.2012.02.012.

    Article  CAS  Google Scholar 

  40. Harvey A, Montezano AC, Touyz RM. Vascular biology of ageing-implications in hypertension. J Mol Cell Cardiol. 2015;83:112–21. https://doi.org/10.1016/j.yjmcc.2015.04.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lakatta EG. The reality of aging viewed from the arterial wall. Artery Res. 2013;7:73–80. https://doi.org/10.1016/j.artres.2013.01.003.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lahera V, De las Heras N, López-Farré A, Manucha W, Ferder L. Role of mitochondrial dysfunction in hypertension and obesity. Curr Hypertens Rep. 2017;19:11. https://doi.org/10.1007/s11906-017-0710-9.

  43. Manucha W, Ritchie B, Ferder L. Hypertension and insulin resistance: implications of mitochondrial dysfunction. Curr Hypertens Rep. 2015;17:504. https://doi.org/10.1007/s11906-014-0504-2.

    Article  CAS  PubMed  Google Scholar 

  44. Molina MN, Ferder L, Manucha W. Emerging role of nitric oxide and heat shock proteins in insulin resistance. Curr Hypertens Rep. 2016;18:1–13. https://doi.org/10.1007/s11906-015-0615-4.

    Article  CAS  PubMed  Google Scholar 

  45. Marón FJM, Ferder L, Saraví FD, Manucha W. Hypertension linked to allostatic load: from psychosocial stress to inflammation and mitochondrial dysfunction. Stress. 2019;22:169–81. https://doi.org/10.1080/10253890.2018.1542683.

    Article  CAS  Google Scholar 

  46. Fulop T, Witkowski JM, Olivieri F, Larbi A. The integration of inflammaging in age-related diseases. Semin Immunol. 2018;40:17–35. https://doi.org/10.1016/j.smim.2018.09.003.

    Article  CAS  PubMed  Google Scholar 

  47. Franceschi C, Bonafè M, Valensin S, Olivieri F, de Luca M, Ottaviani E, et al. Inflamm-aging an evolutionary perspective on immunosenescence. Ann New York Acad Sci. 2000;908(244):254. https://doi.org/10.1111/j.1749-6632.2000.tb06651.x.

    Article  Google Scholar 

  48. Franceschi C, Garagnani P, Parini P, Giuliani C, Santoro A. Inflammaging: a new immune–metabolic viewpoint for age-related diseases. Nat Rev Endocrinol. 2018;14:576–90. https://doi.org/10.1038/s41574-018-0059-4.

    Article  CAS  PubMed  Google Scholar 

  49. Vitale G, Salvioli S, Franceschi C. Oxidative stress and the ageing endocrine system. Nat Rev Endocrinol. 2013;9:228–40. https://doi.org/10.1038/nrendo.2013.29.

    Article  CAS  PubMed  Google Scholar 

  50. Poli G, Fabi C, Bellet MM, Costantini C, Nunziangeli L, Romani L, et al. Epigenetic mechanisms of inflammasome regulation. Int J Mol Sci. 2020;21:5758. https://doi.org/10.3390/ijms21165758.

    Article  CAS  PubMed Central  Google Scholar 

  51. Sanada F, Taniyama Y, Muratsu J, Otsu R, Shimizu H, Rakugi H, et al. Source of chronic inflammation in aging. Front Cardiovasc Med. 2018;5:12. https://doi.org/10.3389/fcvm.2018.00012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Franceschi C, Capri M, Monti D, Giunta S, Olivieri F, Sevini F, et al. Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Dev. 2007;128:92–105. https://doi.org/10.1016/j.mad.2006.11.016.

    Article  CAS  PubMed  Google Scholar 

  53. He Y, Hara H, Núñez G. Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem Sci. 2016;41:1012–21. https://doi.org/10.1016/j.tibs.2016.09.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Latz E, Duewell P. NLRP3 inflammasome activation in inflammaging. Semin Immunol. 2018;40:61–73. https://doi.org/10.1016/j.smim.2018.09.001.

    Article  CAS  PubMed  Google Scholar 

  55. Alexander MR, Norlander AE, Elijovich F, Atreya RV, Gaye A, Gnecco JS, et al. Human monocyte transcriptional profiling identifies IL-18 receptor accessory protein and lactoferrin as novel immune targets in hypertension. Br J Pharmacol. 2019;176:2015–27. https://doi.org/10.1111/bph.14364.

    Article  CAS  PubMed  Google Scholar 

  56. Wada Y, Umeno R, Nagasu H, Kondo M, Tokuyama A, Kadoya H, et al. Endothelial dysfunction accelerates impairment of mitochondrial function in ageing kidneys via inflammasome activation. Int J Mol Sci. 2021;22:9269. https://doi.org/10.3390/ijms22179269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. • De Miguel C, Pelegrín P, Baroja-Mazo A, Cuevas S. Emerging role of the inflammasome and pyroptosis in hypertension. Int J Mol Sci. 2021;22:1064. https://doi.org/10.3390/ijms22031064. This study detailed the mechanisms of pyroptosis and NLRP3 inflammasome in the development of hypertension.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Elizabeth Scott T, Kemp-Harper BK, Hobbs AJ. Inflammasomes: a novel therapeutic target in pulmonary hypertension? Br J Pharmacol. 2019;176:1880–96. https://doi.org/10.1111/bph.14375.

    Article  CAS  Google Scholar 

  59. Tang B, Chen GX, Liang MY, Yao JP, Wu ZK. Ellagic acid prevents monocrotaline-induced pulmonary artery hypertension via inhibiting NLRP3 inflammasome activation in rats. Int J Cardiol. 2015;180:134–41. https://doi.org/10.1016/j.ijcard.2014.11.161.

    Article  PubMed  Google Scholar 

  60. Yin J, You S, Liu H, Chen L, Zhang C, Hu H, et al. Role of P2X7R in the development and progression of pulmonary hypertension. Respir Res. 2017;18:127. https://doi.org/10.1186/s12931-017-0603-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Deng Y, Guo SL, Wei B, Gao XC, Zhou YC, Li JQ. Activation of nicotinic acetylcholine α7 receptor attenuates progression of monocrotaline-induced pulmonary hypertension in rats by downregulating the NLRP3 inflammasome. Front Pharmacol. 2019;10:128. https://doi.org/10.3389/fphar.2019.00128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Morisawa D, Hirotani S, Oboshi M, Nishimura K, Sawada H, Eguchi A, et al. Interleukin-18 disruption suppresses hypoxia-induced pulmonary artery hypertension in mice. Int J Cardiol. 2016;202:522–4. https://doi.org/10.1016/j.ijcard.2015.09.118.

    Article  PubMed  Google Scholar 

  63. Telarevic Cero F, Hillestad V, Sjaastad I, Yndestad A, Aukrust P, Ranheim T, et al. Absence of the inflammasome adaptor ASC reduces hypoxia-induced pulmonary hypertension in mice. Am J Physiol Lung Cell Mol Physiol. 2015;309:378–87. https://doi.org/10.1152/ajplung.00342.2014.

    Article  CAS  Google Scholar 

  64. Matias ML, Romão M, Weel IC, Ribeiro VR, Nunes PR, Borges VT, et al. Endogenous and uric acid-induced activation of NLRP3 inflammasome in pregnant women with preeclampsia. PLoS ONE. 2015;10: e0129095. https://doi.org/10.1371/journal.pone.0129095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Socha MW, Malinowski B, Puk O, Dubiel M, Wiciński M. The NLRP3 inflammasome role in the pathogenesis of pregnancy induced hypertension and preeclampsia. Cells. 2020;9:1642. https://doi.org/10.3390/cells9071642.

    Article  CAS  PubMed Central  Google Scholar 

  66. Kim YG, Kim SM, Kim KP, Lee SH, Moon JY. The role of inflammasome-dependent and inflammasome-independent NLRP3 in the kidney. Cells. 2019;8:1389. https://doi.org/10.3390/cells8111389.

    Article  CAS  PubMed Central  Google Scholar 

  67. Ulrich C, Wildgrube S, Fiedler R, Seibert E, Kneser L, Fick S, et al. NLRP3 inflammasome activation in hemodialysis and hypertensive patients with intact kidney function. Toxins. 2020;12:675. https://doi.org/10.3390/toxins12110675.

    Article  CAS  PubMed Central  Google Scholar 

  68. Sun HJ, Ren XS, Xiong XQ, Chen YZ, Zhao MX, Wang JJ, et al. NLRP3 inflammasome activation contributes to VSMC phenotypic transformation and proliferation in hypertension. Cell Death Dis. 2017;8: e3074. https://doi.org/10.1038/cddis.2017.470.

    Article  PubMed  PubMed Central  Google Scholar 

  69. •• Zhang X, Hong S, Qi S, Liu W, Zhang X, Shi Z, et al. NLRP3 inflammasome is involved in calcium-sensing receptor-induced aortic remodeling in SHRs. Mediators Inflamm. 2019;2019:6847087. https://doi.org/10.1155/2019/6847087. This paper demonstrates the NLRP3 inflammasome activation in VSMC mediated by a calcium-sensing receptor in response to Ang II in the SHR model.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Xi H, Zhang Y, Xu Y, et al. Caspase-1 inflammasome activation mediates homocysteine-induced pyrop-apoptosis in endothelial cells. Circ Res. 2016;118:1525–39. https://doi.org/10.1161/CIRCRESAHA.116.308501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Fu H, Chen JK, Lu WJ, Jiang YJ, Wang YY, Li DJ, et al. Inflammasome-independent NALP3 contributes to high-salt induced endothelial dysfunction. Front Pharmacol. 2018;9:968. 772 https://doi.org/10.3389/fphar.2018.00968.

  72. Furman D, Chang J, Lartigue L, Bolen CR, Haddad F, Gaudilliere B, et al. Expression of specific inflammasome gene modules stratifies older individuals into two extreme clinical and immunological states. Nat Med. 2017;23:174–84. https://doi.org/10.1038/nm.4267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Freund A, Orjalo AV, Desprez PY, Campisi J. Inflammatory networks during cellular senescence: causes and consequences. Trends Mol Med. 2010;16:238–246. https://doi.org/10.1016/j.molmed.2010.03.003.

  74. Herman AB, Occean JR, Sen P. Epigenetic dysregulation in cardiovascular aging and disease. J Cardiovasc Aging. 2021;1. https://doi.org/10.20517/jca.2021.16.

  75. Fulop T, Larbi A, Dupuis G, le Page A, Frost EH, Cohen AA, et al. Immunosenescence and inflamm-aging as two sides of the same coin: friends or foes? Front Immunol. 2018;8:1960. https://doi.org/10.3389/fimmu.2017.01960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chung HY, Kim DH, Lee EK, Chung KW, Chung S, Lee B, et al. Redefining chronic inflammation in aging and age-related diseases: proposal of the senoinflammation concept. Aging Dis. 2019;10:367–382. https://doi.org/10.14336/AD.2018.0324.

  77. Jia G, Aroor AR, Jia C, Sowers JR. Endothelial cell senescence in aging-related vascular dysfunction. Biochimica et Biophysica Acta - Mol Basis Dis. 2019;1865:1802–9. https://doi.org/10.1016/j.bbadis.2018.08.008.

    Article  CAS  Google Scholar 

  78. Tzoran I, Hoffman R, Monreal M. Hemostasis and thrombosis in the oldest old. Semin Thromb Hemost. 2018;44:624–31. https://doi.org/10.1055/s-0038-1657779.

    Article  CAS  PubMed  Google Scholar 

  79. Rea IM, Gibson DS, McGilligan V, McNerlan SE, Denis Alexander H, Ross OA. Age and age-related diseases: role of inflammation triggers and cytokines. Front Immunol. 2018;9:586. https://doi.org/10.3389/fimmu.2018.00586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ferrucci L, Fabbri E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat Rev Cardiol. 2018;15:505–22. https://doi.org/10.1038/s41569-018-0064-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Dinh QN, Chrissobolis S, Diep H, Chan CT, Ferens D, Drummond GR, et al. Advanced atherosclerosis is associated with inflammation, vascular dysfunction and oxidative stress, but not hypertension. Pharmacol Res. 2017;116:70–6. https://doi.org/10.1016/j.phrs.2016.12.032.

    Article  CAS  PubMed  Google Scholar 

  82. Csiszar A, Labinskyy N, Smith K, Rivera A, Orosz Z, Ungvari Z. Vasculoprotective effects of anti-tumor necrosis factor-α treatment in aging. Am J Pathol. 2007;170:388–98. https://doi.org/10.2353/ajpath.2007.060708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Chaudhary P, Pandey A, Azad CS, Tia N, Singh M, Gambhir IS. Association of oxidative stress and endothelial dysfunction in hypertension. Anal Biochemistry. 2020;590: 113535. https://doi.org/10.1016/j.ab.2019.113535.

    Article  CAS  Google Scholar 

  84. Ribeiro IS, Pereira ÍS, Santos DP, Lopes DS, Prado AO, Calado SPM, et al. Association between body composition and inflammation: a central role of IL-17 and IL-10 in diabetic and hypertensive elderly women. Exp Gerontol. 2019;127: 110734. https://doi.org/10.1016/j.exger.2019.110734.

    Article  CAS  PubMed  Google Scholar 

  85. Palmer KR, Kaitu’u-Lino TU, Hastie R, Hannan NJ, Ye L, Binder N, Cannon P, Tuohey L, Johns TG, Shub A, Tong S. Renal transporter activation during angiotensin-II hypertension is blunted in interferon-γ-/- and interleukin-17A/- mice. Hypertens. 2015;65:569–6. https://doi.org/10.1161/HYPERTENSIONAHA.114.04975.

  86. Maloberti A, Vallerio P, Triglione N, Occhi L, Panzeri F, Bassi I, et al. Vascular aging and disease of the large vessels: role of inflammation. High Blood Press Cardiovasc Prev. 2019;26:175–82. https://doi.org/10.1007/s40292-019-00318-4.

    Article  PubMed  Google Scholar 

  87. Osipova OA, Gosteva EV, Belusova ON, Zhernakova NI, Klushnikov NI, Golovina NI. Age-associated features of the development of fibrosis and inflammaging in patients with arterial hypertension and ischemic stroke. Adv Gerontol. 2021;34:879–4. https://europepmc.org/article/med/35152604.

  88. Rudemiller NP, Crowley SD. The role of chemokines in hypertension and consequent target organ damage. Pharmacol Res. 2017;119:404–11. https://doi.org/10.1016/j.phrs.2017.02.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tucci M, Quatraro C, Frassanito MA, Silvestris F. Deregulated expression of monocyte chemoattractant protein-1 (MCP-1) in arterial hypertension: role in endothelial inflammation and atheromasia. J Hypertens. 2006;24:1307–18. https://doi.org/10.1097/01.hjh.0000234111.31239.c3.

    Article  CAS  PubMed  Google Scholar 

  90. Ishibashi M, Hiasa KI, Zhao Q, Inoue S, Ohtani K, Kitamoto S, et al. Critical role of monocyte chemoattractant protein-1 receptor CCR2 on monocytes in hypertension-induced vascular inflammation and remodeling. Circ Res. 2004;94:1203–10. https://doi.org/10.1161/01.RES.0000126924.23467.A3.

    Article  CAS  PubMed  Google Scholar 

  91. Liao TD, Yang XP, Liu YH, Shesely EG, Cavasin MA, Kuziel WA, et al. Role of inflammation in the development of renal damage and dysfunction in angiotensin II-induced hypertension. Hypertens. 2008;52:256–63. https://doi.org/10.1161/HYPERTENSIONAHA.108.112706.

    Article  CAS  Google Scholar 

  92. Kirabo A, Fontana V, de Faria APC, Loperena R, Galindo CL, Wu J, et al. DC isoketal-modified proteins activate T cells and promote hypertension. J Clin Investig. 2014;124:4642–56. 836 https://doi.org/10.1172/JCI74084.

  93. Xiao L, Kirabo A, Wu J, Saleh MA, Zhu L, Wang F, et al. Renal denervation prevents immune cell activation and renal inflammation in Angiotensin II-induced hypertension. Circ Res. 2015;117:547–57. https://doi.org/10.1161/CIRCRESAHA.115.306010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Garcia E, Newhouse S, Caulfield M, Munroe P. Genes and hypertension. Curr Pharm Des. 2005;9:1679–89. https://doi.org/10.2174/1381612033454513.

    Article  Google Scholar 

  95. Millis RM. Epigenetics and hypertension. Curr Hypertens Rep. 2011;13:21–8. https://doi.org/10.1007/s11906-010-0173-8.

    Article  CAS  PubMed  Google Scholar 

  96. Kuneš J, Zicha J. The interaction of genetic and environmental factors in the etiology of hypertension. Physiol Res. 2009;58:S33–S41. https://doi.org/10.33549/physiolres.931913.

  97. Stoll S, Wang C, Qiu H. DNA methylation and histone modification in hypertension. Int J Mol Sci. 2018;19:1174. https://doi.org/10.3390/ijms19041174.

    Article  CAS  PubMed Central  Google Scholar 

  98. Fraineau S, Palii CG, Allan DS, Brand M. Epigenetic regulation of endothelial-cell-mediated vascular repair. FEBS J. 2015;282:1605–29. https://doi.org/10.1111/febs.13183.

    Article  CAS  PubMed  Google Scholar 

  99. Szic KSV, Declerck K, Vidaković M, Berghe WV. From inflammaging to healthy aging by dietary lifestyle choices: is epigenetics the key to personalized nutrition? Clin Epigenetics. 2015;7:33. https://doi.org/10.1186/s13148-015-0068-2.

    Article  CAS  Google Scholar 

  100. Marttila S, Kananen L, Häyrynen S, Jylhävä J, Nevalainen T, Hervonen A, et al. Ageing-associated changes in the human DNA methylome: genomic locations and effects on gene expression. BMC Genomics. 2015;16:179. https://doi.org/10.1186/s12864-015-1381-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhu X, Chen Z, Shen W, Huang G, Sedivy JM, Wang H, et al. Inflammation, epigenetics, and metabolism converge to cell senescence and ageing: the regulation and intervention. Signal Transduct Target Ther. 2021;6:245. https://doi.org/10.1038/s41392-021-00646-9.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Jin J, Liu Y, Huang L, Tan H. Advances in epigenetic regulation of vascular aging. Rev Cardiovasc Med. 2019;20:19–25. https://doi.org/10.31083/j.rcm.2019.01.3189.

  103. Grillone K, Riillo C, Riillo C, Scionti F, Rocca R, Rocca R, et al. Non-coding RNAs in cancer: platforms and strategies for investigating the genomic “dark matter.” J Exp Clin Cancer Res. 2020;39:117. https://doi.org/10.1186/s13046-020-01622-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. •• Martín Giménez VM, Chuffa LGA, Simão VA, Reiter RJ, Manucha W. Protective actions of vitamin D, anandamide and melatonin during vascular inflammation: epigenetic mechanisms involved. Life Sci. 2022;288:120191. https://doi.org/10.1016/j.lfs.2021.120191. This compilation presents different epigenetic mechanisms mediated by endogenous compounds that regulate the vascular inflammatory process in some pathologies including hypertension.

    Article  CAS  PubMed  Google Scholar 

  105. Smolarek I, Wyszko E, Barciszewska AM, Nowak S, Gawronska I, Jablecka A, et al. Global DNA methylation changes in blood of patients with essential hypertension. Med Sci Monit. 2010;16:CR149–155. http://www.medscimonit.com/fulltxt.php?ICID=878465.

  106. Alexeeff SE, Baccarelli AA, Halonen J, Coull BA, Wright RO, Tarantini L, et al. Association between blood pressure and DNA methylation of retrotransposons and pro-inflammatory genes. Int J Epidemiol. 2013;42:270–80. https://doi.org/10.1093/ije/dys220.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Mao S, Gu T, Zhong F, Fan R, Zhu F, Ren P, et al. Hypomethylation of the Toll-like receptor-2 gene increases the risk of essential hypertension. Mol Med Rep. 2017;16:964–70. https://doi.org/10.3892/mmr.2017.6653.

    Article  CAS  PubMed  Google Scholar 

  108. Baccarelli A, Tarantini L, Wright RO, Bollati V, Litonjua AA, Zanobetti A, et al. Repetitive element DNA methylation and circulating endothelial and inflammation markers in the VA normative aging study. Epigenetics. 2010;5:222–8. https://doi.org/10.4161/epi.5.3.11377.

    Article  CAS  PubMed  Google Scholar 

  109. Chen J-M, Stenson PD, Cooper DN, Férec C. A systematic analysis of LINE-1 endonuclease-dependent retrotranspositional events causing human genetic disease. Hum Genet. 2005;117:411–27. https://doi.org/10.1007/s00439-005-1321-0.

    Article  CAS  PubMed  Google Scholar 

  110. Wei L, Liu S, Su Z, Cheng R, Bai X, Li X. LINE-1 hypomethylation is associated with the risk of coronary heart disease in chinese population. Arq Bras Cardiologia. 2014;102:481–7. https://doi.org/10.5935/abc.20140054.

    Article  CAS  Google Scholar 

  111. Dzudie A, Kengne AP, Muna WFT, Ba H, Menanga A, Kouam CK, et al. Prevalence, awareness, treatment and control of hypertension in a self-selected sub-Saharan African urban population: a cross-sectional study. BMJ Open. 2012;0:e001217. https://doi.org/10.1136/bmjopen-2012-001217.

  112. Jiang D, Zheng D, Wang L, Huang Y, Liu H, Xu L, et al. Elevated PLA2G7 gene promoter methylation as a gender-specific marker of aging increases the risk of coronary heart disease in females. PLoS ONE. 2013;8: e59752. https://doi.org/10.1371/journal.pone.0059752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zhang LN, Liu PP, Wang L, Yuan F, Xu L, Xin Y, et al. Lower ADD1 gene promoter DNA methylation increases the risk of essential hypertension. PLoS ONE. 2013;8: e63455. https://doi.org/10.1371/journal.pone.0063455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Fan R, Mao S, Zhong F, Gong M, Yin F, Hao L, Zhang L. Association of AGTR1 promoter methylation levels with essential hypertension risk: a matched case-control study. Cytogenet Genome Res. 2015;147:95–102. https://doi.org/10.1159/000442366.

    Article  CAS  PubMed  Google Scholar 

  115. Sebag IA, Gillis MA, Calderone A, Kasneci A, Meilleur M, Haddad R, et al. Sex hormone control of left ventricular structure/function: mechanistic insights using echocardiography, expression, and DNA methylation analyses in adult mice. Am J Physiol - Heart Circ Physiol. 2011;301:H1706–15. https://doi.org/10.1152/ajpheart.00088.2011.

    Article  CAS  PubMed  Google Scholar 

  116. Sylvester MA, Brooks HL. Sex-specific mechanisms in inflammation and hypertension. Curr Hypertens Rep. 2019;21:53. https://doi.org/10.1007/s11906-019-0959-2.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Pei F, Wang X, Yue R, Chen C, Huang J, Huang J, et al. Differential expression and DNA methylation of angiotensin type 1A receptors in vascular tissues during genetic hypertension development. Mol Cell Biochemistry. 2015;402:1–8. https://doi.org/10.1007/s11010-014-2295-9.

    Article  CAS  Google Scholar 

  118. Bogdarina I, Welham S, King PJ, Burns SP, Clark AJL. Epigenetic modification of the renin-angiotensin system in the fetal programming of hypertension. Circ Res. 2007;100:520–6. https://doi.org/10.1161/01.RES.0000258855.60637.58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Horvath S, Gurven M, Levine ME, Trumble BC, Kaplan H, Allayee H, et al. An epigenetic clock analysis of race/ethnicity, sex, and coronary heart disease. Genome Biol. 2016;17:171. https://doi.org/10.1186/s13059-016-1030-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Smith JA, Raisky J, Ratliff SM, Liu J, Kardia SLR, Turner ST, et al. Intrinsic and extrinsic epigenetic age acceleration are associated with hypertensive target organ damage in older African Americans. BMC Med Genomics. 2019;12:141. https://doi.org/10.1186/s12920-019-0585-5.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Sun YV, Lazarus A, Smith JA, Chuang YH, Zhao W, Turner ST, et al. Gene-specific DNA methylation association with serum levels of C-reactive protein in African Americans. PLoS ONE. 2013;8: e73480. https://doi.org/10.1371/journal.pone.0073480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Mansego ML, Milagro FI, Zulet MÁ, Moreno-Aliaga MJ, Martínez JA. Differential DNA methylation in relation to age and health risks of obesity. Int J Mol Sci. 2015;16:16816–32. https://doi.org/10.3390/ijms160816816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Touyz RM. The role of angiotensin ii in regulating vascular structural and functional changes in hypertension. Curr Hypertens Rep. 2003;5:155–64. https://doi.org/10.1007/s11906-003-0073-2.

    Article  PubMed  Google Scholar 

  124. Montezano AC, Nguyen Dinh Cat A, Rios FJ, Touyz RM. Angiotensin II and vascular injury. Curr Hypertens Rep. 2014;16:431. https://doi.org/10.1007/s11906-014-0431-2.

  125. Gao P, Xu TT, Lu J, Li L, Xu J, Hao DL, et al. Overexpression of SIRT1 in vascular smooth muscle cells attenuates angiotensin II-induced vascular remodeling and hypertension in mice. J Mol Med. 2014;92:347–57. https://doi.org/10.1007/s00109-013-1111-4.

    Article  CAS  PubMed  Google Scholar 

  126. Raneros AB, Bernet CR, Flórez AB, Suarez-Alvarez B. An epigenetic insight into NLRP3 inflammasome activation in inflammation-related processes. Biomed. 2021;9:1614. https://doi.org/10.3390/biomedicines9111614.

    Article  CAS  Google Scholar 

  127. Ren XS, Tong Y, Ling L, Chen D, Sun HJ, Zhou H, et al. NLRP3 gene deletion attenuates angiotensin II-induced phenotypic transformation of vascular smooth muscle cells and vascular remodeling. Cell Physiol Biochemistry. 2018;44:2269–80. https://doi.org/10.1159/000486061.

    Article  CAS  Google Scholar 

  128. •• He M, Chiang HH, Luo H, Zheng Z, Qiao Q, Wang L, et al. An acetylation switch of the NLRP3 inflammasome regulates aging-associated chronic inflammation and insulin resistance. Cell Metab. 2020;31:580–91. https://doi.org/10.1016/j.cmet.2020.01.009. This paper showed that the inactivation of NLRP3 inflammasome in macrophages can prevent aging-associated chronic inflammation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Carrillo-Sepulveda MA, Maddie N, Johnson CM, Burke C, Lutz O, Yakoub B, et al. Vascular hyperacetylation is associated with vascular smooth muscle dysfunction in a rat model of non-obese type 2 diabetes. Mol Med. 2022;28:30. https://doi.org/10.1186/s10020-022-00441-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Bátkai S, Thum T. MicroRNAs in hypertension: mechanisms and therapeutic targets. Curr Hypertens Rep. 2012;14:79–87. https://doi.org/10.1007/s11906-011-0235-6.

    Article  CAS  PubMed  Google Scholar 

  131. Levy E, Spahis S, Bigras JL, Delvin E, Borys JM. The epigenetic machinery in vascular dysfunction and hypertension. Curr Hypertens Rep. 2017;19:52. https://doi.org/10.1007/s11906-017-0745-y.

    Article  CAS  PubMed  Google Scholar 

  132. • Zhang JR, Sun HJ. MiRNAs, lncRNAs, and circular RNAs as mediators in hypertension-related vascular smooth muscle cell dysfunction. Hypertens Res. 2021;44:129–46. https://doi.org/10.1038/s41440-020-00553-6. This review highlights the epigenetic roles of noncoding RNAs in VSMC remodeling in the conditions of systemic and pulmonary arterial hypertension.

    Article  CAS  PubMed  Google Scholar 

  133. Nemecz M, Alexandru N, Tanko G, Georgescu A. Role of microRNA in endothelial dysfunction and hypertension. Curr Hypertens Rep. 2016;18:87. https://doi.org/10.1007/s11906-016-0696-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Huo KG, Richer C, Berillo O, Mahjoub N, Fraulob-Aquino JC, Barhoumi T, et al. MiR-431-5p knockdown protects against angiotensin II-induced hypertension and vascular injury. Hypertens. 2019;73:1007–17. https://doi.org/10.1161/HYPERTENSIONAHA.119.12619.

    Article  CAS  Google Scholar 

  135. Wang X, Wang HX, Li YL, Zhang CC, Zhou CY, Wang L, et al. MicroRNA Let-7i negatively regulates cardiac inflammation and fibrosis. Hypertens. 2015;66:776–85. https://doi.org/10.1161/HYPERTENSIONAHA.115.05548.

    Article  CAS  Google Scholar 

  136. •• Li FJ, Zhang CL, Luo XJ, Peng J, Yang TL. Involvement of the MiR-181b-5p/HMGB1 pathway in ang II-induced phenotypic transformation of smooth muscle cells in hypertension. Aging Dis. 2019;10:231–48. https://doi.org/10.14336/AD.2018.0510. In this research, the upregulation of miRNA-181b-5p prevented Ang II–induced VSMC proliferation, remodeling, and migration, which was shown to be decreased in hypertensive elderly patients.

  137. Wang S, Tang L, Zhou Q, Lu D, Duan W, Chen C, et al. MiR-185/P2Y6 axis inhibits angiotensin II-induced human aortic vascular smooth muscle cell proliferation. DNA Cell Biol. 2017;36:377–85. https://doi.org/10.1089/dna.2016.3605.

    Article  CAS  PubMed  Google Scholar 

  138. Das S, Reddy MA, Natarajan R. Role of epigenetic mechanisms regulated by enhancers and long noncoding RNAs in cardiovascular disease. Curr Opin Cardiol. 2020;35:234–41. https://doi.org/10.1097/HCO.0000000000000728.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Das S, Zhang E, Senapati P, Amaram V, Reddy MA, Stapleton K, et al. A novel angiotensin II-induced long noncoding RNA giver regulates oxidative stress, inflammation, and proliferation in vascular smooth muscle cells. Circ Res. 2018;123:1298–312. https://doi.org/10.1161/CIRCRESAHA.118.313207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. •• Ren XS, Tong Y, Qiu Y, Ye C, Wu N, Xiong XQ, et al. MiR155-5p in adventitial fibroblasts-derived extracellular vesicles inhibits vascular smooth muscle cell proliferation via suppressing angiotensin-converting enzyme expression. J Extracellular Vesicles. 2020;9:1698795. https://doi.org/10.1080/20013078.2019.1698795. The authors show that ACE was a target gene of miRNA-155-5p suppressing Ang II–related VSMC proliferation and remodeling in the SHR model.

    Article  CAS  Google Scholar 

  141. Leung A, Trac C, Jin W, Lanting L, Akbany A, Sætrom P, et al. Novel long noncoding RNAs are regulated by angiotensin II in vascular smooth muscle cells. Circ Res. 2013;113:266–78. https://doi.org/10.1161/CIRCRESAHA.112.300849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Tong Y, Ye C, Zheng F, Bo JH, Wu LL, Han Y, et al. Extracellular vesicle-mediated miR135a-5p transfer in hypertensive rat contributes to vascular smooth muscle cell proliferation via targeting FNDC5. Vasc Pharmacol. 2021;140: 106864. https://doi.org/10.1016/j.vph.2021.106864.

    Article  CAS  Google Scholar 

  143. Ye C, Tong Y, Wu N, Wan GW, Zheng F, Chen JY, et al. Inhibition of miR-135a-5p attenuates vascular smooth muscle cell proliferation and vascular remodeling in hypertensive rats. Acta Pharmacol Sin. 2021;42:1798–807. https://doi.org/10.1038/s41401-020-00608-x.

    Article  CAS  PubMed  Google Scholar 

  144. Ling L, Chen D, Tong Y, Zang YH, Ren XS, Zhou H, et al. Fibronectin type III domain containing 5 attenuates NLRP3 inflammasome activation and phenotypic transformation of adventitial fibroblasts in spontaneously hypertensive rats. J Hypertens. 2018;36:1104–14. https://doi.org/10.1097/HJH.0000000000001654.

    Article  CAS  PubMed  Google Scholar 

  145. • Chen H, Qiao H, Zhao Q, Wei F. microRNA-135a-5p regulates NOD-like receptor family pyrin domain containing 3 inflammasome-mediated hypertensive cardiac inflammation and fibrosis via thioredoxin-interacting protein. Bioengineered. 2022;13:4658–73. https://doi.org/10.1080/21655979.2021.2024956. This paper provides an opposed function of miRNA-135-5p in the inhibition of NLRP3 expression, thus alleviating hypertensive cardiac inflammation and fibrosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Bauernfeind F, Rieger A, Schildberg FA, Knolle PA, Schmid-Burgk JL, Hornung V. NLRP3 inflammasome activity is negatively controlled by miR-223. J Immunol. 2012;189:4175–81. https://doi.org/10.4049/jimmunol.1201516.

    Article  CAS  PubMed  Google Scholar 

  147. Zhou W, Xi D, Shi Y, Wang L, Zhong H, Huang Z, et al. MicroRNA-1929-3p participates in murine cytomegalovirus-induced hypertensive vascular remodeling through Ednra/NLRP3 inflammasome activation. Int J Mol Med. 2021;47:719–31. https://doi.org/10.3892/ijmm.2020.4829.

    Article  CAS  PubMed  Google Scholar 

  148. Bandyopadhyay S, Lane T, Venugopal R, Parthasarathy PT, Cho Y, Galam L, et al. MicroRNA-133a-1 regulates inflammasome activation through uncoupling protein-2. Biochem Biophysical Res Commun. 2013;439:407–12. https://doi.org/10.1016/j.bbrc.2013.08.056.

    Article  CAS  Google Scholar 

  149. Dinh QN, Drummond GR, Kemp-Harper BK, Diep H, de Silva TM, Kim HA, et al. Pressor response to angiotensin II is enhanced in aged mice and associated with inflammation, vasoconstriction and oxidative stress. Aging. 2017;9:1595–06. https://doi.org/10.18632/aging.101255.

  150. Pasqua T, Pagliaro P, Rocca C, Angelone T, Penna C. Role of NLRP-3 inflammasome in hypertension: a potential therapeutic target. Curr Pharm Biotechnol. 2018;19:708–14. https://doi.org/10.2174/1389201019666180808162011.

    Article  CAS  PubMed  Google Scholar 

  151. de Cavanagh EMV, Inserra F, Ferder L. Angiotensin II blockade: how its molecular targets may signal to mitochondria and slow aging. Coincidences with calorie restriction and mTOR inhibition. Am J Physiol Heart Circ Physiol. 2015;309:H15–H44. https://doi.org/10.1152/ajpheart.00459.2014.

  152. Muka T, Koromani F, Portilla E, O’Connor A, Bramer WM, Troup J, et al. The role of epigenetic modifications in cardiovascular disease: a systematic review. Int J Cardiol. 2016;212:174–83. https://doi.org/10.1016/j.ijcard.2016.03.062.

    Article  PubMed  Google Scholar 

  153. Batista MA, Calvo-Fortes F, Silveira-Nunes G, Camatta GC, Speziali E, Turroni S, et al. Inflammaging in endemic areas for infectious diseases. Front Immunol. 2020;11: 579972. https://doi.org/10.3389/fimmu.2020.579972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by grants from the Research and Technology Council of Cuyo University (SECyT), Mendoza, Argentina, and from the National Agency for the Promotion of Research, Technological Development and Innovation ANPCyT FONCyT (Grant no. PICT 2020-Serie A- 4000).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, manuscript review, and draft preparation, L.G.A.C, W.M., and V.A.S.; critical review and final editing, L.F.

Corresponding author

Correspondence to Luiz Gustavo A. Chuffa.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest concerning the research, authorship, and/or publication of this article.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any.

of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical on Hypertension and Obesity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simão, V.A., Ferder, L., Manucha, W. et al. Epigenetic Mechanisms Involved in Inflammaging-Associated Hypertension. Curr Hypertens Rep 24, 547–562 (2022). https://doi.org/10.1007/s11906-022-01214-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-022-01214-4

Keywords

Navigation