Skip to main content

Advertisement

Log in

Increased Mortality after an Acute Heart Failure Episode: New Pathophysiological Insights from the RELAX-AHF Study and Beyond

  • Pharmacologic Therapy (WHW Tang, Section Editor)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Acute heart failure (AHF) is one of the most common causes of hospital admission. Despite the very high short-term morbidity and mortality and high costs associated with the condition, little progress has been made toward an understanding of the complex mechanisms of AHF, and particularly the spike in mortality after AHF admission. This manuscript addresses certain hypotheses for the pathophysiology of increased mortality after an AHF episode, specifically exploring the role of neurohormonal and inflammatory activation, congestion, and end-organ damage occurring during the first hours and days of an AHF episode. The results of the recently published RELAX-AHF (Relaxin in Acute Heart Failure) study may hold the key to understanding these intricate mechanisms. In the study, congestion and end-organ damage, which were strongly associated with increased 180-day mortality, were relieved by early administration of serelaxin, which was also associated with reduction in 180-day mortality. Hence, it is possible that early treatment of AHF, including decongestion and prevention of damage to end organs, including kidneys, heart, and liver, is critical to preventing mortality in AHF. This may require a change in our strategic approach to the management of patients admitted with AHF, setting them apart from patients with chronic heart failure (HF), and developing specific treatment strategies for AHF patients beyond simply implementing therapies proven to be effective in chronic HF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Dickstein K, Cohen-Solal A, Filippatos G, McMurray JJ, Ponikowski P, Poole-Wilson PA, et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2008 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association of the ESC (HFA) and endorsed by the European Society of Intensive Care Medicine (ESICM). Eur Heart J. 2008;29:2388–442. These are the official guidelines of the European society of cardiology for the diagnosis and treatment of HF including AHF.

    Article  CAS  PubMed  Google Scholar 

  2. O'Connor CM, Miller AB, Blair JE, Konstam MA, Wedge P, Bahit MC, et al. Causes of death and rehospitalization in patients hospitalized with worsening heart failure and reduced left ventricular ejection fraction: results from Efficacy of Vasopressin Antagonism in Heart Failure Outcome Study with Tolvaptan (EVEREST) program. Am Heart J. 2010;159:841–9. This study shows the very high rates of readmission and death in acute heart failure.

    Article  PubMed  Google Scholar 

  3. Huesch MD, Ong MK, Fonarow GC. Measuring heart failure care by 30-day readmission: rethinking the quality of outcome measures. Am Heart J. 2013;166:605–9.

    Article  PubMed  Google Scholar 

  4. Jong P, Vowinckel E, Liu PP, Gong Y, Tu JV. Prognosis and determinants of survival in patients newly hospitalized for heart failure: a population-based study. Arch Intern Med. 2002;162:1689–94.

    Article  PubMed  Google Scholar 

  5. Gheorghiade M, Follath F, Ponikowski P, Barsuk JH, Blair JEA, Cleland JG, et al. Assessing and grading congestion in acute heart failure: a scientific statement from the Acute Heart Failure Committee of the Heart Failure Association of the European Society of Cardiology and endorsed by the European Society of Intensive Care Medicine. Eur J Heart Fail. 2010;12:423–33.

    Article  PubMed  Google Scholar 

  6. Torre-Amione G, Young JB, Colucci WS, Lewis BS, Pratt C, Cotter G, et al. Hemodynamic and clinical effects of tezosentan, an intravenous dual endothelin receptor antagonist, in patients hospitalized for acute decompensated heart failure. J Am Coll Cardiol. 2003;42:140–7.

    Article  CAS  PubMed  Google Scholar 

  7. Packer M, Colucci W, Fisher L, et al. Effect of levosimendan on the short-term clinical course of patients with acutely decompensated heart failure. JCHF 2013; 1103–11.

  8. McMurray JJ, Teerlink JR, Cotter G, Bourge RC, Cleland JG, Jondeau G, et al. Effects of tezosentan on symptoms and clinical outcomes in patients with acute heart failure: the VERITAS randomized controlled trials. JAMA. 2007;298:2009–19.

    Article  CAS  PubMed  Google Scholar 

  9. Gheorghiade M, Konstam MA, Burnett Jr JC, Grinfeld L, Maggioni AP, Swedberg K, et al. Short-term clinical effects of tolvaptan, an oral vasopressin antagonist, in patients hospitalized for heart failure: the EVEREST clinical status trials. JAMA. 2007;297:1332–43.

    Article  CAS  PubMed  Google Scholar 

  10. Massie BM, O’Connor CM, Metra M, Ponikowski P, Teerlink JR, Cotter G, et al. Rolofylline, an adenosine A1-receptor antagonist, in acute heart failure. N Engl J Med. 2010;363:1419–28.

    Article  PubMed  Google Scholar 

  11. Fonarow GC, Heywood JT, Heidenreich PA, Lopatin M, Yancy CW, ADHERE Scientific Advisory Committee and Investigators. Temporal trends in clinical characteristics, treatments, and outcomes for heart failure hospitalizations, 2002 to 2004: findings from Acute Decompensated Heart Failure National Registry (ADHERE). Am Heart J. 2007;153:1021–8. The ADHERE registry is the largest AHF registry to date that represent some critical characteristics of patients with AHF in real life.

    Article  PubMed  Google Scholar 

  12. Zile MR, Gaasch WH, Anand IS, Haass M, Little WC, Miller AB, et al. Mode of death in patients with heart failure and a preserved ejection fraction: results from the Irbesartan in Heart Failure with Preserved Ejection Fraction Study (I-Preserve) trial. Circulation. 2010;121:1393–405.

    Article  PubMed  Google Scholar 

  13. Abrahamsson P, Swedberg K, Borer JS, Böhm M, Kober L, Komajda M, et al. Risk following hospitalization in stable chronic systolic heart failure. Eur J Heart Fail. 2013;15:885–91. This is an important manuscript showing the large increased risk of mortality after an AHF event in patients with stable chronic HF.

    Article  PubMed  Google Scholar 

  14. Teerlink JR, Cotter G, Davison BA, Felker GM, Filippatos G, Greenberg BH, et al. Serelaxin, recombinant human relaxin-2, for treatment of acute heart failure (RELAX-AHF): a randomised, placebo-controlled trial. Lancet. 2013;381:29–39. This is an important paper that for the first time suggests that early intervention in the first 2 days of an AHF admission may be beneficial.

    Article  CAS  PubMed  Google Scholar 

  15. Colombo PC, Ganda A, Lin J, Onat D, Harxhi A, Iyasere JE, et al. Inflammatory activatio: cardiac, renal, and cardio-renal interactions in patients with the cardiorenal syndrome. Heart Fail Rev. 2012;17:177–90. An important review of inflammatory changes and their role in the cardio renal axis in HF.

    Article  CAS  PubMed  Google Scholar 

  16. Floras JS. Clinical aspects of sympathetic activation and parasympathetic withdrawal in heart failure. J Am Coll Cardiol. 1993;22(suppl):72A–84.

    Article  CAS  PubMed  Google Scholar 

  17. Kaye DM, Lefkovits J, Jennings GL, Bergin P, Broughton A, Esler MD. Adverse consequences of high sympathetic nervous activity in the failing human heart. J Am Coll Cardiol. 1995;26:1257–63.

    Article  CAS  PubMed  Google Scholar 

  18. Lee CS, Tkacs NC. Current concepts of neurohormonal activation in heart failure: mediators and mechanisms. AACN Adv Crit Care. 2008;19:364–85.

    Article  PubMed  Google Scholar 

  19. Chaggar PS, Malkin CJ, Shaw SM, Williams SG, Channer KS. Neuroendocrine effects on the heart and targets for therapeutic manipulation in heart failure. Cardiovasc Ther. 2009;27:187–93.

    Article  CAS  PubMed  Google Scholar 

  20. Rea ME, Dunlap ME. Renal hemodynamics in heart failure: implications for treatment. Curr Opin Nephrol Hypertens. 2008;17:87–92.

    Article  PubMed  Google Scholar 

  21. McMurray JJ, Adamopoulos S, Anker SD, Auricchio A, Böhm M, Dickstein K, et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2012;33:1787–847.

    Article  PubMed  Google Scholar 

  22. Boulanger CM. Secondary endothelial dysfunction: hypertension and heart failure. J Mol Cell Cardiol. 1999;31:39–49.

    Article  CAS  PubMed  Google Scholar 

  23. Stewart DJ, Cernacek P, Costello KB, Rouleau JL. Elevated endothelin- 1 in heart failure and loss of normal response to postural change. Circulation. 1992;85:510–7.

    Article  CAS  PubMed  Google Scholar 

  24. McMurray JJ, Ray SG, Abdullah I, Dargie HJ, Morton JJ. Plasma endothelin in chronic heart failure. Circulation. 1992;85:1374–9.

    Article  CAS  PubMed  Google Scholar 

  25. Kim HN, Januzzi AL. Natriuretic peptide testing in heart failure. Circulation. 2011;123:2015–9.

    Article  PubMed  Google Scholar 

  26. Felker GM, Hasselblad V, Hernandez AF, O”Connor CM. Biomarker-guided Therapy in Chronic heart failure: a meta-analysis of randomized controlled trials. Am Heart J. 2009;158:422–30. This is an excellent paper that summarizes the major clinical trials and provides expert insight on the benefits of measuring natriuretic peptides and their usefulness for individual approach in the treatment of heart failure.

    Article  CAS  PubMed  Google Scholar 

  27. Milo O, Cotter G, Kaluski E, Brill A, Blatt A, Krakover R, et al. Comparison of inflammatory and neurohormonal activation in cardiogenic pulmonary edema secondary to ischemic versus nonischemic causes. Am J Cardiol. 2003;92:222–6. A very important paper that shows in detail the neurohormonal and inflammatory activation in AHF.

    Article  CAS  PubMed  Google Scholar 

  28. Mehra MR, Uber PA, Francis GS. Heart failure therapy at a crossroad: are there limits to the neurohormonal model? J Am Coll Cardiol. 2003;41:1606–10.

    Article  PubMed  Google Scholar 

  29. Gheorghiade M, De Luca L, Bonow RO. Neurohormonal inhibition in heart failure: insights from recent clinical trials. Am J Cardiol. 2005;96:3L–9.

    Article  CAS  PubMed  Google Scholar 

  30. Coletta AP, Cleland JG. Clinical trials update: highlights of the Scientific Sessions of the XXIII Congress of the European Society of Cardiology—WARIS II, ESCAMI, PAFAC, RITZ-1 and TIME. Eur J Heart Failure. 2001;3:747–50.

    Article  CAS  Google Scholar 

  31. O’Connor CM, Gattis WA, Adams KF, Hasselblad V, Chandler B, Frey A, et al. Tezosentan in patients with acute heart failure and acute coronary syndromes. J Am Coll Cardiol. 2003;41:1452–7.

    Article  PubMed  Google Scholar 

  32. Kaluski E, Kobrin I, Zimlichman R, Marmor A, Krakov O, Milo O, et al. RITZ-5: randomized intravenous tezosentan (an endothelin-A/B antagonist) for the treatment of pulmonary edema. J Am Coll Cardiol. 2003;41:204–10.

    Article  CAS  PubMed  Google Scholar 

  33. Gheorghiade M, Böhm M, Greene SJ, Fonarow GC, Lewis EF, Zannad F, et al. Effect of aliskiren on postdischarge mortality and heart failure readmissions among patients hospitalized for heart failure: the ASTRONAUT randomized trial. JAMA. 2013;309:1125–35.

    Article  CAS  PubMed  Google Scholar 

  34. O'Connor CM, Starling RC, Hernandez AF, Armstrong PW, Dickstein K, Hasselblad V, et al. Effect of nesiritide in patients with acute decompensated heart failure. N Engl J Med. 2011;365:32–43. The largest prospective randomized study in AHF.

    Article  PubMed  Google Scholar 

  35. Chen D, Assad-Kottner C, Orrego C, Torre-Amione G. Cytokines and acute heart failure. Crit Care Med. 2008;36:S9–16.

    Article  CAS  PubMed  Google Scholar 

  36. Nymo SH, Hulthe J, Ueland T, McMurray J, Wikstrand J, Askevold ET, et al. Inflammatory cytokines in chronic heart failure: interleukin-8 is associated with adverse outcome. Results from CORONA. Eur J Heart Fail. 2013 Aug 4.

  37. Hartog JW, Willemsen S, van Veldhuisen DJ, Posma JL, van Wijk LM, Hummel YM, et al. Effects of alagebrium, an advanced glycation endproduct breaker, on exercise tolerance and cardiac function in patients with chronic heart failure. Eur J Heart Fail. 2011;13:899–908.

    Article  CAS  PubMed  Google Scholar 

  38. van der Velde AR, Gullestad L, Ueland T, Aukrust P, Guo Y, Adourian A, et al. Prognostic value of changes in galectin-3 levels over time in patients with heart failure: data from CORONA and COACH. Circ Heart Fail. 2013;6:219–26.

    Article  PubMed  Google Scholar 

  39. Januzzi Jr JL, Peacock WF, Maisel AS, Chae CU, Jesse RL, Baggish AL, et al. Measurement of the interleukin family member ST2 in patients with acute dyspnea: results from the PRIDE (Pro-Brain Natriuretic Peptide Investigation of Dyspnea in the Emergency Department) study. J Am Coll Cardiol. 2007;50:607–13.

    Article  CAS  PubMed  Google Scholar 

  40. Bozkurt B, Mann DL, Deswal A. Biomarkers of inflammation in heart failure. Heart Fail Rev. 2010;15:331–41.

    Article  CAS  PubMed  Google Scholar 

  41. Milo-Cotter O, Cotter-Davison B, Lombardi C, Sun H, Bettari L, Bugatti S, et al. Neurohormonal activation in acute heart failure: results from VERITAS. Cardiology. 2011;119:96–105. An important sub-analysis from VERITAS showing that some inflammatory markers have an independent predictive role of adverse outcomes in AHF.

    Article  CAS  PubMed  Google Scholar 

  42. Kempf T, von Haehling S, Peter T, Allhoff T, Cicoira M, Doehner W, et al. Prognostic utility of growth differentiation factor-15 in patients with chronic heart failure. J Am Coll Cardiol. 2007;50:1054–60.

    Article  CAS  PubMed  Google Scholar 

  43. Anand IS, Kempf T, Rector TS, Tapken H, Allhoff T, Jantzen F, et al. Serial measurement of growth-differentiation factor-15 in heart failure: relation to disease severity and prognosis in the Valsartan Heart Failure Trial. Circulation. 2010;122:1387–95.

    Article  CAS  PubMed  Google Scholar 

  44. Lok SI, Winkens B, Goldschmeding R, van Geffen AJ, Nous FM, van Kuik J, et al. Circulating growth differentiation factor-15 correlates with myocardial fibrosis in patients with non-ischaemic dilated cardiomyopathy and decreases rapidly after left ventricular assist device support. Eur J Heart Fail. 2012;14:1249–56. This is an excellent manuscript that defines involvement of GDF-15 on several pathological pathways in heart failure, suggesting that GDF-15 changes represent a pathophysiological axis that is not completely addressed in HF.

    Article  CAS  PubMed  Google Scholar 

  45. Núñez J, Núñez E, Miñana G, Sanchis J, Bodí V, Rumiz E, et al. Effectiveness of the relative lymphocyte count to predict one-year mortality in patients with acute heart failure. Am J Cardiol. 2011;107:1034–9.

    Article  PubMed  Google Scholar 

  46. Charach G, Grosskopf I, Roth A, Afek A, Wexler D, Sheps D, et al. Usefulness of total lymphocyte count as predictor of outcome in patients with chronic heart failure. Am J Cardiol. 2011;107:1353–6.

    Article  PubMed  Google Scholar 

  47. Milo-Cotter O, Teerlink JR, Metra M, Felker GM, Ponikowski P, Voors AA, et al. Low lymphocyte ratio as a novel prognostic factor in acute heart failure: results from the Pre-RELAX-AHF study. Cardiology. 2010;117:190–6.

    Article  PubMed  Google Scholar 

  48. Milo-Cotter O, Felker GM, Uriel N, Kaluski E, Edwards C, Rund MM, et al. Patterns of leukocyte counts on admissions for acute heart failure-presentation and outcome--results from a community based registry. Int J Cardiol. 2011;148:17–22. A study that shows that the percentage of lymphocytes is an important predictor of outcome in AHF and may therefore represent an unexplored pathophysiological pathway in AHF.

    Article  PubMed  Google Scholar 

  49. Leuschner F, Rauch PJ, Ueno T, Gorbatov R, Marinelli B, Lee WW, et al. Rapid monocyte kinetics in acute myocardial infarction are sustained by extramedullary monocytopoiesis. J Exp Med. 2012;209:123–37.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Uriel N, Torre-Amione G, Milo O, Kaluski E, Perchenet L, Blatt A, et al. Echocardiographic ejection fraction in patients with acute heart failure: correlations with hemodynamic, clinical, and neurohormonal measures and short-term outcome. Eur J Heart Fail. 2005;7:815–9. This is an important manuscript that suggests that EF is not strongly associated with AHF characteristics.

    Article  PubMed  Google Scholar 

  51. Gandhi SK, Powers JC, Nomeir AM, Fowle K, Kitzman DW, Rankin KM, et al. The pathogenesis of acute pulmonary edema associated with hypertension. N Engl J Med. 2001;344:17–22.

    Article  CAS  PubMed  Google Scholar 

  52. Metra M, Cotter G, Davison BA, Felker GM, Filippatos G, Greenberg BH, et al. Effect of serelaxin on cardiac, renal, and hepatic biomarkers in the Relaxin in Acute Heart Failure (RELAX-AHF) development program: correlation with outcomes. J Am Coll Cardiol. 2013;61:196–206. This is an important manuscript that describes mechanisms through which end organ damage may contribute to the increased mortality after an AHF episode.

    Article  CAS  PubMed  Google Scholar 

  53. Kociol RD, Pang PS, Gheorghiade M, Fonarow GC, O’Connor CM, Felker GM. Troponin elevation in heart failure prevalence, mechanisms, and clinical implications. J Am Coll Cardiol. 2010;56:1071–8.

    Article  CAS  PubMed  Google Scholar 

  54. Peacock IV WF, De Marco T, Fonarow GC, Diercks D, Wynne J, Apple FS, et al. Cardiac troponin and outcome in acute heart failure. N Engl J Med. 2008;358:2117–26.

    Article  CAS  PubMed  Google Scholar 

  55. You JJ, Austin PC, Alter DA, Ko DT, Tu JV. Relation between cardiac troponin I and mortality in acute decompensated heart failure. Am Heart J. 2007;153:462–70.

    Article  CAS  PubMed  Google Scholar 

  56. Felker GM, Hasselblad V, Tang WH, Hernandez AF, Armstrong PW, Fonarow GC, et al. Troponin I in acute decompensated heart failure: insights from the ASCEND-HF study. Eur J Heart Fail. 2012;14:1257–64. This is a well-written paper on prevalence of cardiac Troponin elevation among patients admitted with acute heart failure, and its importance in prediction of in-hospital outcome.

    Article  CAS  PubMed  Google Scholar 

  57. Fonarow GC, Adams Jr KF, Abraham WT, Yancy CW, Boscardin WJ, ADHERE Scientific Advisory Committee, Study Group, and Investigators. Risk stratification for in-hospital mortality in acutely decompensated heart failure: classification and regression tree analysis. JAMA. 2005;293:572–80.

    Article  CAS  PubMed  Google Scholar 

  58. Abraham WT, Fonarow GC, Albert NM, Stough WG, Gheorghiade M, Greenberg BH, et al. Predictors of in-hospital mortality in patients hospitalized for heart failure: insights from the organized program to initiate lifesaving treatment in hospitalized patients with heart failure (OPTIMIZE-HF). J Am Coll Cardiol. 2008;52:347–56. This is another important registry of AHF patients.

    Article  PubMed  Google Scholar 

  59. Lee DS, Austin PC, Rouleau JL, Liu PP, Naimark D, Tu JV. Predicting mortality among patients hospitalized for heart failure: derivation and validation of a clinical model. JAMA. 2003;290:2581–7.

    Article  CAS  PubMed  Google Scholar 

  60. Smith GL, Vaccarino V, Kosiborod M, Lichtman JH, Cheng S, Watnick SG, et al. Worsening renal function: what is a clinically meaningful change in creatinine during hospitalization with heart failure? J Card Fail. 2003;9:13–25.

    Article  CAS  PubMed  Google Scholar 

  61. Gottlieb SS, Abraham W, Butler J, et al. The prognostic importance of different definitions of worsening renal function in congestive heart failure. J Card Fail. 2002;8:136–41.

    Article  PubMed  Google Scholar 

  62. Damman K, Navis G, Voors AA, et al. Worsening renal function and prognosis in heart failure: systematic review and meta-analysis. J Card Fail. 2007;13:599–608. An important review of the cardio renal axis in HF.

    Article  PubMed  Google Scholar 

  63. Vallon V, Mühlbauer B, Osswald H. Adenosine and kidney function. Physiol Rev. 2006;86:901–40.

    Article  CAS  PubMed  Google Scholar 

  64. Vallon V, Miracle C, Thomson S. Adenosine and kidney function: potential implications in patients with heart failure. Eur J Heart Fail. 2008;10:176–87.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Cotter G, Dittrich HC, Weatherley BD, Bloomfield DM, O'Connor CM, Metra M, et al. The PROTECT pilot study: a randomized, placebo-controlled, dose-finding study of the adenosine A1 receptor antagonist rolofylline in patients with acute heart failure and renal impairment. J Card Fail. 2008;14:631–40.

    Article  CAS  PubMed  Google Scholar 

  66. Costanzo MR, Guglin ME, Saltzberg MT, Jessup ML, Bart BA, Teerlink JR, et al. Ultrafiltration versus intravenous diuretics for patients hospitalized for acute decompensated heart failure. J Am Coll Cardiol. 2007;49:675–83.

    Article  CAS  PubMed  Google Scholar 

  67. Bart BA, Goldsmith SR, Lee KL, Givertz MM, O'Connor CM, Bull DA, et al. Ultrafiltration in decompensated heart failure with cardiorenal syndrome. N Engl J Med. 2012;367:2296–304.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Zile MR, Bennett TD, et al. Transition from chronic compensated to acute decompensated heart failure: pathophysiological insights obtained from continuous monitoring of intracardiac pressures. Circulation. 2008;118:1433–41.

    Article  PubMed  Google Scholar 

  69. Adamson PB, Magalski A, Braunschweig F, Böhm M, Reynolds D, Steinhaus D, et al. Ongoing right ventricular hemodynamics in heart failure: clinical value of measurements derived from an implantable monitoring system. J Am Coll Cardiol. 2003;19(41):565–71.

    Article  Google Scholar 

  70. Vaduganathan M, Greene SJ, Butler J, Sabbah HN, Shantsila E, Lip GY, et al. The immunological axis in heart failure: importance of the leukocyte differential. Heart Fail Rev. 2012 Oct 7.

  71. Nikolaou M, Parissis J, Yilmaz MB, et al. Liver function abnormalities, clinical profile, and outcome in acute decompensated heart failure. Eur Heart J. 2013;34:742–9. This is an important manuscript that describes in detail the hepatic axis and its importance in AHF.

    Article  PubMed  Google Scholar 

  72. Henrion J, Descamps O, Luwaert R, Schapira M, Parfonry A, Heller F. Hypoxic hepatitis in patients with cardiac failure: incidence in a coronary care unit and measurement of hepatic blood flow. J Hepatol. 1994;21:696–703.

    Article  CAS  PubMed  Google Scholar 

  73. Naschitz JE, Slobodin G, Lewis RJ, Zuckerman E, Yeshurun D. Heart diseases affecting the liver and liver diseases affecting the heart. Am Heart J. 2000;140:111–20.

    Article  CAS  PubMed  Google Scholar 

  74. Samsky MD, Patel CB, DeWald TA, Smith AD, Felker GM, Rogers JG, et al. Cardiohepatic interactions in heart failure: an overview and clinical implications. J Am Coll Cardiol. 2013;61:2397–405.

    Article  PubMed  Google Scholar 

  75. Cassidy WM, Reynolds TB. Serum lactic dehydrogenase in the differential diagnosis of acute hepatocellular injury. J Clin Gastroenterol. 1994;19:118–21.

    Article  CAS  PubMed  Google Scholar 

  76. Henrion J, Schapira M, Luwaert R, Colin L, Delannoy A, Heller FR. Hypoxic hepatitis: clinical and hemodynamic study in 142 consecutive cases. Medicine (Baltimore). 2003;82:392–406.

    Article  Google Scholar 

  77. Teichman SL, Unemori E, Dschietzig T, Conrad K, Voors AA, Teerlink JR, et al. Relaxin, a pleiotropic vasodilator for the treatment of heart failure. Heart Fail Rev. 2009;14:321–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Dschietzig T, Teichman S, Unemori E, Wood S, Boehmer J, Richter C, et al. Intravenous recombinant human relaxin in compensated heart failure: a safety, tolerability, and pharmacodynamic trial. J Card Fail. 2009;15:182–90.

    Article  CAS  PubMed  Google Scholar 

  79. Teichman SL, Unemori E, Teerlink JR, Cotter G, Metra M. Relaxin: review of biology and potential role in treating heart failure. Curr Heart Fail Rep. 2010;7:75–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Teerlink JR, Metra M, Felker GM, Ponikowski P, Voors AA, Weatherley BD, et al. Relaxin for the treatment of patients with acute heart failure (Pre-RELAX-AHF): a multicentre, randomised, placebo-controlled, parallel-group, dose-finding phase IIb study. Lancet. 2009;373:1429–39.

    Article  CAS  PubMed  Google Scholar 

  81. Wallentin L. Reducing time to treatment in acute myocardial infarction. Eur J Emerg Med. 2000;7:217–27.

    Article  CAS  PubMed  Google Scholar 

  82. Grossman AW, Broderick JP. Advances and challenges in treatment and prevention of ischemic stroke. Ann Neurol. 2013 Aug 8.

  83. Capp R, Soremekun OA, Biddinger PD, White BA, Sweeney LM, Chang Y, et al. Impact of physician-assisted triage on timing of antibiotic delivery in patients admitted to the hospital with community-acquired pneumonia (CAP). J Emerg Med. 2012;43:502–8.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are employees of Momentum Research, Inc., which has received payments for clinical research from Cardio3, ChanRX, Sorbent, Amgen, Merck, NovaCardia, Corthera, Novartis, and Trevena.

Compliance with Ethics Guidelines

Conflict of Interest

Gad Cotter has received a consulting fee/honorarium from Novartis.

Olga Milo declares that she has no conflict of interest.

Beth A. Davison has received a consulting fee/honorarium from Novartis.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gad Cotter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cotter, G., Milo, O. & Davison, B.A. Increased Mortality after an Acute Heart Failure Episode: New Pathophysiological Insights from the RELAX-AHF Study and Beyond. Curr Heart Fail Rep 11, 19–30 (2014). https://doi.org/10.1007/s11897-013-0180-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-013-0180-6

Keywords

Navigation