Skip to main content

Advertisement

Log in

Air Pollution and the Heart: Updated Evidence from Meta-analysis Studies

  • Ischemic Heart Disease (D Mukherjee, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Although environmental exposure such as air pollution is detrimental to cardiovascular disease (CVD), the effects of different air pollutants on different CVD endpoints produced variable findings. We provide updated evidence between air pollutants and CVD outcomes including mitigation strategies with meta-analytic evidence.

Recent Findings

An increased exposure to any class of air pollutants including particulate matter (PM), gas, toxic metals, and disruptive chemicals has been associated with CVD events. Exposure to PM < 2.5 μm has been consistently associated with most heart diseases and stroke as well as CVDs among at-risk individuals. Despite this, there is no clinical approach available for systemic evaluation of air pollution exposure and management.

Summary

A large number of epidemiological evidence clearly suggests the importance of air pollution prevention and control for reducing the risk of CVDs and mortality. Cost-effective and feasible strategies for air pollution monitoring, screening, and necessary interventions are urgently required among at-risk populations and those living or working, or frequently commuting in polluted areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. • Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, et al. Global burden of cardiovascular diseases and risk factors, 1990–2019: update From the GBD 2019 Study. J Am Coll Cardiol. 2020;76(25):2982–3021. https://doi.org/10.1016/j.jacc.2020.11.010. This report provides the updated burden of ambient and household air pollution. It suggests that the global disease burden drastically increased in 2019 owing to ambient air pollution while a declining pattern is noticed in the global disease burden due to household air pollution compared to 1990.

    Article  Google Scholar 

  2. Mukherjee D, Eagle KA. Improving quality of cardiovascular care in the real world: how can we remove the barriers? Am J Manag Care. 2004;10(7 Pt 2):471–2.

    Google Scholar 

  3. WHO: Cardiovascular diseases (CVDs), key facts. https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (2021). Accessed 2022.

  4. Gibbons GH, Seidman CE, Topol EJ. Conquering atherosclerotic cardiovascular disease - 50 years of progress. N Engl J Med. 2021;384(9):785–8. https://doi.org/10.1056/NEJMp2033115.

    Article  CAS  Google Scholar 

  5. Azimova K, San Juan Z, Mukherjee D. Cardiovascular safety profile of currently available diabetic drugs. Ochsner J. 2014;14(4):616–32.

    Google Scholar 

  6. Buttar HS, Li T, Ravi N. Prevention of cardiovascular diseases: role of exercise, dietary interventions, obesity and smoking cessation. Exp Clin Cardiol. 2005;10(4):229–49.

    CAS  Google Scholar 

  7. Ma J, Mena M, Mandania RA, Ghosh A, Dodoo C, Dwivedi AK, et al. Associations between Combined Influenza and Pneumococcal Pneumonia Vaccination and Cardiovascular Outcomes. Cardiology. 2021;146(6):772–80. https://doi.org/10.1159/000519469.

    Article  CAS  Google Scholar 

  8. Ali MU, Liu G, Yousaf B, Ullah H, Abbas Q, Munir MAM. A systematic review on global pollution status of particulate matter-associated potential toxic elements and health perspectives in urban environment. Environ Geochem Health. 2019;41(3):1131–62. https://doi.org/10.1007/s10653-018-0203-z.

    Article  CAS  Google Scholar 

  9. Manisalidis I, Stavropoulou E, Stavropoulos A, Bezirtzoglou E. Environmental and health impacts of air pollution: a review. Front Public Health. 2020;8:14. https://doi.org/10.3389/fpubh.2020.00014.

    Article  Google Scholar 

  10. Novakova Z, Novak J, Kitanovski Z, Kukucka P, Smutna M, Wietzoreck M, et al. Toxic potentials of particulate and gaseous air pollutant mixtures and the role of PAHs and their derivatives. Environ Int. 2020;139: 105634. https://doi.org/10.1016/j.envint.2020.105634.

    Article  CAS  Google Scholar 

  11. Kim KH, Kabir E, Kabir S. A review on the human health impact of airborne particulate matter. Environ Int. 2015;74:136–43. https://doi.org/10.1016/j.envint.2014.10.005.

    Article  CAS  Google Scholar 

  12. Schraufnagel DE. The health effects of ultrafine particles. Exp Mol Med. 2020;52(3):311–7. https://doi.org/10.1038/s12276-020-0403-3.

    Article  CAS  Google Scholar 

  13. Jiang XQ, Mei XD, Feng D. Air pollution and chronic airway diseases: what should people know and do? J Thorac Dis. 2016;8(1):E31-40. https://doi.org/10.3978/j.issn.2072-1439.2015.11.50.

    Article  Google Scholar 

  14. Peters A, Dockery DW, Muller JE, Mittleman MA. Increased particulate air pollution and the triggering of myocardial infarction. Circulation. 2001;103(23):2810–5. https://doi.org/10.1161/01.cir.103.23.2810.

    Article  CAS  Google Scholar 

  15. • Samet JM, Dominici F, Curriero FC, Coursac I, Zeger SL. Fine particulate air pollution and mortality in 20 U.S. cities, 1987–1994. N Engl J Med. 2000;343(24):1742–9. https://doi.org/10.1056/NEJM200012143432401. This comprehensive meta-analysis study evaluated the association of fine particulate matter (PM) with the risk of mortality from cardiovascular and respiratory causes in the USA. This study reported that higher levels of PM10 are associated with an increased risk of mortality in 20 US cities.

  16. Furlong MA, Klimentidis YC. Associations of air pollution with obesity and body fat percentage, and modification by polygenic risk score for BMI in the UK Biobank. Environ Res. 2020;185: 109364. https://doi.org/10.1016/j.envres.2020.109364.

    Article  CAS  Google Scholar 

  17. Eze IC, Schaffner E, Fischer E, Schikowski T, Adam M, Imboden M, et al. Long-term air pollution exposure and diabetes in a population-based Swiss cohort. Environ Int. 2014;70:95–105. https://doi.org/10.1016/j.envint.2014.05.014.

    Article  CAS  Google Scholar 

  18. Kampa M, Castanas E. Human health effects of air pollution. Environ Pollut. 2008;151(2):362–7. https://doi.org/10.1016/j.envpol.2007.06.012.

    Article  CAS  Google Scholar 

  19. •• de Bont J, Jaganathan S, Dahlquist M, Persson A, Stafoggia M, Ljungman P. Ambient air pollution and cardiovascular diseases: an umbrella review of systematic reviews and meta-analyses. J Intern Med. 2022;291(6):779–800. https://doi.org/10.1111/joim.13467. This is the first umbrella review summarizing the epidemiological evidence for the association of exposure to particulate matter (PM) and nitrogen oxides with cardiovascular diseases and mortality.

    Article  CAS  Google Scholar 

  20. Shah AS, Lee KK, McAllister DA, Hunter A, Nair H, Whiteley W, et al. Short term exposure to air pollution and stroke: systematic review and meta-analysis. BMJ. 2015;350: h1295. https://doi.org/10.1136/bmj.h1295.

    Article  Google Scholar 

  21. •• Chowdhury R, Ramond A, O’Keeffe LM, Shahzad S, Kunutsor SK, Muka T, et al. Environmental toxic metal contaminants and risk of cardiovascular disease: systematic review and meta-analysis. BMJ. 2018;362: k3310. https://doi.org/10.1136/bmj.k3310. This is the first study addressing the relationship between exposure to environmental toxic metals including lead, arsenic, cadmium, copper, and mercury with the risk of cardiovascular disease, coronary heart disease, and stroke using a meta-analysis approach.

    Article  Google Scholar 

  22. Chen M, Zhao J, Zhuo C, Zheng L. The association between ambient air pollution and atrial fibrillation. Int Heart J. 2021;62(2):290–7. https://doi.org/10.1536/ihj.20-523.

    Article  CAS  Google Scholar 

  23. Song X, Liu Y, Hu Y, Zhao X, Tian J, Ding G, et al. Short-term exposure to air pollution and cardiac arrhythmia: a meta-analysis and systematic review. Int J Environ Res Public Health. 2016;13(7). https://doi.org/10.3390/ijerph13070642.

  24. Niu Z, Liu F, Yu H, Wu S, Xiang H. Association between exposure to ambient air pollution and hospital admission, incidence, and mortality of stroke: an updated systematic review and meta-analysis of more than 23 million participants. Environ Health Prev Med. 2021;26(1):15. https://doi.org/10.1186/s12199-021-00937-1.

    Article  CAS  Google Scholar 

  25. •• Newell K, Kartsonaki C, Lam KBH, Kurmi O. Cardiorespiratory health effects of gaseous ambient air pollution exposure in low and middle income countries: a systematic review and meta-analysis. Environ Health. 2018;17(1):41. https://doi.org/10.1186/s12940-018-0380-3. This is the first meta-analysis reporting the effects of exposure to gaseous pollutants on cardiovascular morbidity and mortality in low- and middle-income countries exclusively.

    Article  CAS  Google Scholar 

  26. Shao Q, Liu T, Korantzopoulos P, Zhang Z, Zhao J, Li G. Association between air pollution and development of atrial fibrillation: a meta-analysis of observational studies. Heart Lung. 2016;45(6):557–62. https://doi.org/10.1016/j.hrtlng.2016.08.001.

    Article  Google Scholar 

  27. Yue C, Yang F, Li F, Chen Y. Association between air pollutants and atrial fibrillation in general population: A systematic review and meta-analysis. Ecotoxicol Environ Saf. 2021;208:111508. https://doi.org/10.1016/j.ecoenv.2020.111508.

  28. Fischer F, Kraemer A. Meta-analysis of the association between second-hand smoke exposure and ischaemic heart diseases. COPD and stroke BMC Public Health. 2015;15:1202. https://doi.org/10.1186/s12889-015-2489-4.

    Article  CAS  Google Scholar 

  29. Zhao R, Chen S, Wang W, Huang J, Wang K, Liu L, et al. The impact of short-term exposure to air pollutants on the onset of out-of-hospital cardiac arrest: a systematic review and meta-analysis. Int J Cardiol. 2017;226:110–7. https://doi.org/10.1016/j.ijcard.2016.10.053.

    Article  Google Scholar 

  30. Lin H, Wang H, Wu W, Lang L, Wang Q, Tian L. The effects of smoke-free legislation on acute myocardial infarction: a systematic review and meta-analysis. BMC Public Health. 2013;13:529. https://doi.org/10.1186/1471-2458-13-529.

    Article  Google Scholar 

  31. Mocevic E, Kristiansen P, Bonde JP. Risk of ischemic heart disease following occupational exposure to welding fumes: a systematic review with meta-analysis. Int Arch Occup Environ Health. 2015;88(3):259–72. https://doi.org/10.1007/s00420-014-0965-2.

    Article  CAS  Google Scholar 

  32. Zhu W, Cai J, Hu Y, Zhang H, Han X, Zheng H, et al. Long-term exposure to fine particulate matter relates with incident myocardial infarction (MI) risks and post-MI mortality: a meta-analysis. Chemosphere. 2021;267: 128903. https://doi.org/10.1016/j.chemosphere.2020.128903.

    Article  CAS  Google Scholar 

  33. Luo C, Zhu X, Yao C, Hou L, Zhang J, Cao J, et al. Short-term exposure to particulate air pollution and risk of myocardial infarction: a systematic review and meta-analysis. Environ Sci Pollut Res Int. 2015;22(19):14651–62. https://doi.org/10.1007/s11356-015-5188-x.

    Article  CAS  Google Scholar 

  34. Stieb DM, Zheng C, Salama D, Berjawi R, Emode M, Hocking R, et al. Correction to: Systematic review and meta-analysis of case-crossover and time-series studies of short term outdoor nitrogen dioxide exposure and ischemic heart disease morbidity. Environ Health. 2020;19(1):85. https://doi.org/10.1186/s12940-020-00636-4.

    Article  Google Scholar 

  35. Wang Y, Eliot MN, Wellenius GA. Short-term changes in ambient particulate matter and risk of stroke: a systematic review and meta-analysis. J Am Heart Assoc. 2014;3(4). https://doi.org/10.1161/JAHA.114.000983.

  36. Mills IC, Atkinson RW, Kang S, Walton H, Anderson HR. Quantitative systematic review of the associations between short-term exposure to nitrogen dioxide and mortality and hospital admissions. BMJ Open. 2015;5(5): e006946. https://doi.org/10.1136/bmjopen-2014-006946.

    Article  CAS  Google Scholar 

  37. Alexeeff SE, Liao NS, Liu X, Van Den Eeden SK, Sidney S. Long-term PM2.5 exposure and risks of ischemic heart disease and stroke events: review and meta-analysis. J Am Heart Assoc. 2021;10(1):e016890. https://doi.org/10.1161/JAHA.120.016890.

  38. Zhang TN, Li D, Wu QJ, Xia J, Wen R, Chen XC, et al. Exposure to nitrogen oxide in the first trimester and risk of cardiovascular-related malformations: a dose-response meta-analysis of observational studies. Biomed Res Int. 2018;2018:1948407. https://doi.org/10.1155/2018/1948407.

    Article  CAS  Google Scholar 

  39. Shin HH, Fann N, Burnett RT, Cohen A, Hubbell BJ. Outdoor fine particles and nonfatal strokes: systematic review and meta-analysis. Epidemiology. 2014;25(6):835–42. https://doi.org/10.1097/EDE.0000000000000162.

    Article  Google Scholar 

  40. Scheers H, Jacobs L, Casas L, Nemery B, Nawrot TS. Long-term exposure to particulate matter air pollution is a risk factor for stroke: meta-analytical evidence. Stroke. 2015;46(11):3058–66. https://doi.org/10.1161/STROKEAHA.115.009913.

    Article  CAS  Google Scholar 

  41. Yuan S, Wang J, Jiang Q, He Z, Huang Y, Li Z, et al. Long-term exposure to PM2.5 and stroke: a systematic review and meta-analysis of cohort studies. Environ Res. 2019;177:108587. https://doi.org/10.1016/j.envres.2019.108587.

  42. Mustafic H, Jabre P, Caussin C, Murad MH, Escolano S, Tafflet M, et al. Main air pollutants and myocardial infarction: a systematic review and meta-analysis. JAMA. 2012;307(7):713–21. https://doi.org/10.1001/jama.2012.126.

    Article  CAS  Google Scholar 

  43. Farhadi Z, Abulghasem Gorgi H, Shabaninejad H, Aghajani Delavar M, Torani S. Association between PM2.5 and risk of hospitalization for myocardial infarction: a systematic review and a meta-analysis. BMC Public Health. 2020;20(1):314. https://doi.org/10.1186/s12889-020-8262-3.

  44. Fu P, Guo X, Cheung FMH, Yung KKL. The association between PM2.5 exposure and neurological disorders: a systematic review and meta-analysis. Sci Total Environ. 2019;655:1240–8. https://doi.org/10.1016/j.scitotenv.2018.11.218.

  45. Li XY, Yu XB, Liang WW, Yu N, Wang L, Ye XJ, et al. Meta-analysis of association between particulate matter and stroke attack. CNS Neurosci Ther. 2012;18(6):501–8. https://doi.org/10.1111/j.1755-5949.2012.00325.x.

    Article  Google Scholar 

  46. Yu XB, Su JW, Li XY, Chen G. Short-term effects of particulate matter on stroke attack: meta-regression and meta-analyses. PLoS ONE. 2014;9(5): e95682. https://doi.org/10.1371/journal.pone.0095682.

    Article  CAS  Google Scholar 

  47. Yue C, Yang F, Wang L, Li F, Chen Y. Association between fine particulate matter and atrial fibrillation in implantable cardioverter defibrillator patients: a systematic review and meta-analysis. J Interv Card Electrophysiol. 2020;59(3):595–601. https://doi.org/10.1007/s10840-020-00864-1.

    Article  Google Scholar 

  48. Lai HK, Tsang H, Wong CM. Meta-analysis of adverse health effects due to air pollution in Chinese populations. BMC Public Health. 2013;13:360. https://doi.org/10.1186/1471-2458-13-360.

    Article  Google Scholar 

  49. Yang H, Li S, Sun L, Zhang X, Cao Z, Xu C, et al. Smog and risk of overall and type-specific cardiovascular diseases: a pooled analysis of 53 cohort studies with 21.09 million participants. Environ Res. 2019;172:375–83. https://doi.org/10.1016/j.envres.2019.01.040.

  50. • Pranata R, Vania R, Tondas AE, Setianto B, Santoso A. A time-to-event analysis on air pollutants with the risk of cardiovascular disease and mortality: a systematic review and meta-analysis of 84 cohort studies. J Evid Based Med. 2020;13(2):102–15. https://doi.org/10.1111/jebm.12380. This comprehensive meta-analysis study assessed the effects of particulate matter and nitrogen dioxide on the development of cardiovascular disease events and mortality using cohort studies only.

    Article  Google Scholar 

  51. Wang F, Ahat X, Liang Q, Ma Y, Sun M, Lin L, et al. The relationship between exposure to PM2.5 and atrial fibrillation in older adults: A systematic review and meta-analysis. Sci Total Environ. 2021;784:147106. https://doi.org/10.1016/j.scitotenv.2021.147106.

  52. • Zhang J, Wang X, Yan M, Shan A, Wang C, Yang X, et al. Sex differences in cardiovascular risk associated with long-term PM2.5 Exposure: a systematic review and meta-analysis of cohort studies. Front Public Health. 2022;10:802167. https://doi.org/10.3389/fpubh.2022.802167. This is the first meta-analytic evidence reporting the sex differences in the association between exposure to long-term particulate matter (PM2.5) with cardiovascular disease. This study reported an excess risk of ischemic heart disease in women compared to men without any sex-based differences in the risk of stroke associated with long-term particulate matter (PM2.5) exposure.

  53. Shah AS, Langrish JP, Nair H, McAllister DA, Hunter AL, Donaldson K, et al. Global association of air pollution and heart failure: a systematic review and meta-analysis. Lancet. 2013;382(9897):1039–48. https://doi.org/10.1016/S0140-6736(13)60898-3.

    Article  CAS  Google Scholar 

  54. Atkinson RW, Kang S, Anderson HR, Mills IC, Walton HA. Epidemiological time series studies of PM2.5 and daily mortality and hospital admissions: a systematic review and meta-analysis. Thorax. 2014;69(7):660–5. https://doi.org/10.1136/thoraxjnl-2013-204492.

  55. Stieb DM, Berjawi R, Emode M, Zheng C, Salama D, Hocking R, et al. Systematic review and meta-analysis of cohort studies of long term outdoor nitrogen dioxide exposure and mortality. PLoS ONE. 2021;16(2): e0246451. https://doi.org/10.1371/journal.pone.0246451.

    Article  CAS  Google Scholar 

  56. • Atkinson RW, Butland BK, Dimitroulopoulou C, Heal MR, Stedman JR, Carslaw N, et al. Long-term exposure to ambient ozone and mortality: a quantitative systematic review and meta-analysis of evidence from cohort studies. BMJ Open. 2016;6(2): e009493. https://doi.org/10.1136/bmjopen-2015-009493. This is an important study reporting the relative contribution of fine particle components in short-term exposure to particulate matter with cardiovascular hospitalization and mortality. This study reports that elemental carbon is strongly associated with cardiovascular mortality. This study also provides a systemic summary of the elemental content of particles associated with cardiovascular disease and mortality.

    Article  CAS  Google Scholar 

  57. Atkinson RW, Mills IC, Walton HA, Anderson HR. Fine particle components and health–a systematic review and meta-analysis of epidemiological time series studies of daily mortality and hospital admissions. J Expo Sci Environ Epidemiol. 2015;25(2):208–14. https://doi.org/10.1038/jes.2014.63.

    Article  CAS  Google Scholar 

  58. Cai X, Li Z, Scott EM, Li X, Tang M. Short-term effects of atmospheric particulate matter on myocardial infarction: a cumulative meta-analysis. Environ Sci Pollut Res Int. 2016;23(7):6139–48. https://doi.org/10.1007/s11356-016-6186-3.

    Article  CAS  Google Scholar 

  59. Fajersztajn L, Saldiva P, Pereira LAA, Leite VF, Buehler AM. Short-term effects of fine particulate matter pollution on daily health events in Latin America: a systematic review and meta-analysis. Int J Public Health. 2017;62(7):729–38. https://doi.org/10.1007/s00038-017-0960-y.

    Article  Google Scholar 

  60. Chen F, Fan Z, Qiao Z, Cui Y, Zhang M, Zhao X, et al. Does temperature modify the effect of PM10 on mortality? A systematic review and meta-analysis. Environ Pollut. 2017;224:326–35. https://doi.org/10.1016/j.envpol.2017.02.012.

    Article  CAS  Google Scholar 

  61. Yang WS, Wang X, Deng Q, Fan WY, Wang WY. An evidence-based appraisal of global association between air pollution and risk of stroke. Int J Cardiol. 2014;175(2):307–13. https://doi.org/10.1016/j.ijcard.2014.05.044.

    Article  Google Scholar 

  62. Faustini A, Rapp R, Forastiere F. Nitrogen dioxide and mortality: review and meta-analysis of long-term studies. Eur Respir J. 2014;44(3):744–53. https://doi.org/10.1183/09031936.00114713.

    Article  CAS  Google Scholar 

  63. Hoek G, Krishnan RM, Beelen R, Peters A, Ostro B, Brunekreef B, et al. Long-term air pollution exposure and cardio-respiratory mortality: a review. Environ Health. 2013;12(1):43. https://doi.org/10.1186/1476-069X-12-43.

    Article  CAS  Google Scholar 

  64. Chen J, Hoek G. Long-term exposure to PM and all-cause and cause-specific mortality: a systematic review and meta-analysis. Environ Int. 2020;143: 105974. https://doi.org/10.1016/j.envint.2020.105974.

    Article  CAS  Google Scholar 

  65. Sun HZ, Yu P, Lan C, Wan MWL, Hickman S, Murulitharan J, et al. Cohort-based long-term ozone exposure-associated mortality risks with adjusted metrics: a systematic review and meta-analysis. Innovation (Camb). 2022;3(3): 100246. https://doi.org/10.1016/j.xinn.2022.100246.

    Article  CAS  Google Scholar 

  66. Guo X, Song Q, Wang H, Li N, Su W, Liang M, et al. Systematic review and meta-analysis of studies between short-term exposure to ambient carbon monoxide and non-accidental, cardiovascular, and respiratory mortality in China. Environ Sci Pollut Res Int. 2022;29(24):35707–22. https://doi.org/10.1007/s11356-022-19464-9.

    Article  Google Scholar 

  67. Li J, Woodward A, Hou XY, Zhu T, Zhang J, Brown H, et al. Modification of the effects of air pollutants on mortality by temperature: a systematic review and meta-analysis. Sci Total Environ. 2017;575:1556–70. https://doi.org/10.1016/j.scitotenv.2016.10.070.

    Article  CAS  Google Scholar 

  68. Ma Z, Cao X, Chang Y, Li W, Chen X, Tang NJ. Association between gestational exposure and risk of congenital heart disease: A systematic review and meta-analysis. Environ Res. 2021Jun;197:111014. https://doi.org/10.1016/j.envres.2021.111014.

  69. •• Al-Kindi SG, Brook RD, Biswal S, Rajagopalan S. Environmental determinants of cardiovascular disease: lessons learned from air pollution. Nat Rev Cardiol. 2020;17(10):656–72. https://doi.org/10.1038/s41569-020-0371-2. This review summarizes the empirical evidence linking air pollution to cardiovascular diseases and provides potential mechanisms between air pollutants and the risk of cardiovascular diseases.

    Article  Google Scholar 

  70. • Dubey P, Reddy SY, Singh V, Shi T, Coltharp M, Clegg D, et al. Association of exposure to phthalate metabolites with sex hormones, obesity, and metabolic syndrome in US women. JAMA Netw Open. 2022;5(9): e2233088. https://doi.org/10.1001/jamanetworkopen.2022.33088. This is the first comprehensive and most recent study reporting the association of exposure to phthalate metabolites with sex hormones, obesity, and metabolic syndrome according to pre and postmenopausal status. This study reports that low levels of sex hormone-binding globulin are associated with phthalate metabolites in US females.

    Article  Google Scholar 

  71. Kander MC, Cui Y, Liu Z. Gender difference in oxidative stress: a new look at the mechanisms for cardiovascular diseases. J Cell Mol Med. 2017;21(5):1024–32. https://doi.org/10.1111/jcmm.13038.

    Article  Google Scholar 

  72. Heo S, Son JY, Lim CC, Fong KC, Choi HM, Hernandez-Ramirez RU, et al. Effect modification by sex for associations of fine particulate matter (PM2.5) with cardiovascular mortality, hospitalization, and emergency room visits: systematic review and meta-analysis. Environ Res Lett. 2022;17(5). https://doi.org/10.1088/1748-9326/ac6cfb.

  73. •• Fu X, Xu J, Zhang R, Yu J. The association between environmental endocrine disruptors and cardiovascular diseases: a systematic review and meta-analysis. Environ Res. 2020;187: 109464. https://doi.org/10.1016/j.envres.2020.109464. This is the first comprehensive meta-analysis study that investigated the association between long-term exposure to endocrine-disrupting chemicals with the risk of combined cardiovascular disease.

    Article  CAS  Google Scholar 

  74. Faridi S, Brook RD, Yousefian F, Hassanvand MS, Nodehi RN, Shamsipour M, et al. Effects of respirators to reduce fine particulate matter exposures on blood pressure and heart rate variability: a systematic review and meta-analysis. Environ Pollut. 2022;303: 119109. https://doi.org/10.1016/j.envpol.2022.119109.

    Article  CAS  Google Scholar 

  75. Brown N, Luckett T, Davidson PM, DiGiacomo M. Family-focussed interventions to reduce harm from smoking in primary school-aged children: a systematic review of evaluative studies. Prev Med. 2017;101:117–25. https://doi.org/10.1016/j.ypmed.2017.06.011.

    Article  Google Scholar 

  76. Xia X, Chan KH, Lam KBH, Qiu H, Li Z, Yim SHL, et al. Effectiveness of indoor air purification intervention in improving cardiovascular health: a systematic review and meta-analysis of randomized controlled trials. Sci Total Environ. 2021;789: 147882. https://doi.org/10.1016/j.scitotenv.2021.147882.

    Article  CAS  Google Scholar 

  77. Quansah R, Semple S, Ochieng CA, Juvekar S, Armah FA, Luginaah I, et al. Effectiveness of interventions to reduce household air pollution and/or improve health in homes using solid fuel in low-and-middle income countries: a systematic review and meta-analysis. Environ Int. 2017;103:73–90. https://doi.org/10.1016/j.envint.2017.03.010.

    Article  CAS  Google Scholar 

  78. Burns J, Boogaard H, Polus S, Pfadenhauer LM, Rohwer AC, van Erp AM, et al. Interventions to reduce ambient air pollution and their effects on health: an abridged Cochrane systematic review. Environ Int. 2020;135: 105400. https://doi.org/10.1016/j.envint.2019.105400.

    Article  CAS  Google Scholar 

  79. Zhu Y, Song X, Wu R, Fang J, Liu L, Wang T, et al. A review on reducing indoor particulate matter concentrations from personal-level air filtration intervention under real-world exposure situations. Indoor Air. 2021;31(6):1707–21. https://doi.org/10.1111/ina.12922.

    Article  CAS  Google Scholar 

  80. Janjua S, Powell P, Atkinson R, Stovold E, Fortescue R. Individual-level interventions to reduce personal exposure to outdoor air pollution and their effects on people with long-term respiratory conditions. Cochrane Database Syst Rev. 2021;8:CD013441. https://doi.org/10.1002/14651858.CD013441.pub2.

  81. Park HJ, Lee HY, Suh CH, Kim HC, Kim HC, Park YJ, et al. The effect of particulate matter reduction by indoor air filter use on respiratory symptoms and lung function: a systematic review and meta-analysis. Allergy Asthma Immunol Res. 2021;13(5):719–32. https://doi.org/10.4168/aair.2021.13.5.719.

    Article  CAS  Google Scholar 

  82. Jonidi Jafari A, Charkhloo E, Pasalari H. Urban air pollution control policies and strategies: a systematic review. J Environ Health Sci Eng. 2021;19(2):1911–40. https://doi.org/10.1007/s40201-021-00744-4.

    Article  Google Scholar 

  83. Lee KK, Miller MR, Shah ASV. Air pollution and stroke. J Stroke. 2018;20(1):2–11. https://doi.org/10.5853/jos.2017.02894.

    Article  Google Scholar 

  84. Song J, Han K, Wang Y, Qu R, Liu Y, Wang S, et al. Microglial activation and oxidative stress in PM2.5-induced neurodegenerative disorders. Antioxidants (Basel). 2022;11(8). https://doi.org/10.3390/antiox11081482.

  85. Hartz AM, Bauer B, Block ML, Hong JS, Miller DS. Diesel exhaust particles induce oxidative stress, proinflammatory signaling, and P-glycoprotein up-regulation at the blood-brain barrier. FASEB J. 2008;22(8):2723–33. https://doi.org/10.1096/fj.08-106997.

    Article  CAS  Google Scholar 

  86. Morgan TE, Davis DA, Iwata N, Tanner JA, Snyder D, Ning Z, et al. Glutamatergic neurons in rodent models respond to nanoscale particulate urban air pollutants in vivo and in vitro. Environ Health Perspect. 2011;119(7):1003–9. https://doi.org/10.1289/ehp.1002973.

    Article  CAS  Google Scholar 

  87. Hahad O, Lelieveld J, Birklein F, Lieb K, Daiber A, Munzel T. Ambient air pollution increases the risk of cerebrovascular and neuropsychiatric disorders through induction of inflammation and oxidative stress. Int J Mol Sci. 2020;21(12). https://doi.org/10.3390/ijms21124306.

  88. Oppenheim HA, Lucero J, Guyot AC, Herbert LM, McDonald JD, Mabondzo A, et al. Exposure to vehicle emissions results in altered blood brain barrier permeability and expression of matrix metalloproteinases and tight junction proteins in mice. Part Fibre Toxicol. 2013;10:62. https://doi.org/10.1186/1743-8977-10-62.

    Article  CAS  Google Scholar 

  89. Sun Q, Wang A, Jin X, Natanzon A, Duquaine D, Brook RD, et al. Long-term air pollution exposure and acceleration of atherosclerosis and vascular inflammation in an animal model. JAMA. 2005;294(23):3003–10. https://doi.org/10.1001/jama.294.23.3003.

    Article  CAS  Google Scholar 

  90. Hemmingsen JG, Rissler J, Lykkesfeldt J, Sallsten G, Kristiansen J, Moller PP, et al. Controlled exposure to particulate matter from urban street air is associated with decreased vasodilation and heart rate variability in overweight and older adults. Part Fibre Toxicol. 2015;12:6. https://doi.org/10.1186/s12989-015-0081-9.

    Article  CAS  Google Scholar 

  91. Franklin BA, Brook R, Arden Pope C 3rd. Air pollution and cardiovascular disease Curr Probl Cardiol. 2015;40(5)207-238. https://doi.org/10.1016/j.cpcardiol.2015.01.003.

  92. Srebot V, Gianicolo EA, Rainaldi G, Trivella MG, Sicari R. Ozone and cardiovascular injury. Cardiovasc Ultrasound. 2009;7:30. https://doi.org/10.1186/1476-7120-7-30.

    Article  Google Scholar 

  93. •• Rajagopalan S, Landrigan PJ. Pollution and the heart. N Engl J Med. 2021;385(20):1881–92. https://doi.org/10.1056/NEJMra2030281. This is the most recent review study summarizing the current evidence between pollution and cardiovascular disease. It also summarizes the evidence-based approaches for cardiovascular disease prevention.

    Article  CAS  Google Scholar 

  94. Plunk EC, Richards SM. Endocrine-disrupting air pollutants and their effects on the hypothalamus-pituitary-gonadal axis. Int J Mol Sci. 2020;21(23). https://doi.org/10.3390/ijms21239191.

  95. Dwivedi AK, Dubey P, Cistola DP, Reddy SY. Association between obesity and cardiovascular outcomes: updated evidence from meta-analysis studies. Curr Cardiol Rep. 2020;22(4):25. https://doi.org/10.1007/s11886-020-1273-y.

    Article  Google Scholar 

  96. Dwivedi AK, Dubey P, Reddy SY, Clegg DJ. Associations of glycemic index and glycemic load with cardiovascular disease: updated evidence from meta-analysis and cohort studies. Curr Cardiol Rep. 2022;24(3):141–61. https://doi.org/10.1007/s11886-022-01635-2.

    Article  Google Scholar 

  97. Dubey P, Reddy S, Boyd S, Bracamontes C, Sanchez S, Chattopadhyay M, et al. Effect of nutritional supplementation on oxidative stress and hormonal and lipid profiles in PCOS-affected females. Nutrients. 2021;13(9). https://doi.org/10.3390/nu13092938.

  98. Dubey P, Thakur V, Chattopadhyay M. Role of minerals and trace elements in diabetes and insulin resistance. Nutrients. 2020;12(6). https://doi.org/10.3390/nu12061864.

  99. Laumbach RJ, Cromar KR, Adamkiewicz G, Carlsten C, Charpin D, Chan WR, et al. Personal interventions for reducing exposure and risk for outdoor air pollution: an official American Thoracic Society workshop report. Ann Am Thorac Soc. 2021;18(9):1435–43. https://doi.org/10.1513/AnnalsATS.202104-421ST.

    Article  Google Scholar 

  100. •• Hadley MB, Baumgartner J, Vedanthan R. Developing a clinical approach to air pollution and cardiovascular health. Circulation. 2018;137(7):725–42. https://doi.org/10.1161/CIRCULATIONAHA.117.030377. This study provides clinical strategies to assess air pollution risk exposure and potential mitigation strategies for reducing the risk of cardiovascular disease attributable to air pollution exposure. It also offers a patient-screening tool for the assessment of air pollution exposure.

    Article  Google Scholar 

  101. • Kaufman JD, Elkind MSV, Bhatnagar A, Koehler K, Balmes JR, Sidney S, et al. Guidance to reduce the cardiovascular burden of ambient air pollutants: a policy statement from the American Heart Association. Circulation. 2020;142(23):e432–47. https://doi.org/10.1161/CIR.0000000000000930. This report summarizes the impacts of air pollution on cardiovascular health and provides guidance policies to mitigate the impact of air pollution on cardiovascular disease in the USA.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alok Kumar Dwivedi.

Ethics declarations

Conflict of Interest

Alok Kumar Dwivedi, Deepanjali Vishwakarma, Pallavi Dubey, and Sireesha Y. Reddy declare that they do not have any conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Ischemic Heart Disease

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dwivedi, A.K., Vishwakarma, D., Dubey, P. et al. Air Pollution and the Heart: Updated Evidence from Meta-analysis Studies. Curr Cardiol Rep 24, 1811–1835 (2022). https://doi.org/10.1007/s11886-022-01819-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-022-01819-w

Keywords

Navigation