Skip to main content

Advertisement

Log in

Environmental Interventions for Preventing Atopic Diseases

  • Review
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

In this review, we detail the exposome (consisting of environmental factors such as diet, microbial colonization, allergens, pollutants, and stressors), mechanistic and clinical research supporting its influence on atopic disease, and potentiation from climate change. We highlight contemporary environmental interventions and available evidence substantiating their roles in atopic disease prevention, from observational cohorts to randomized controlled trials, when available.

Recent Findings

Early introduction to allergenic foods is an effective primary prevention strategy to reduce food allergy. Diverse dietary intake also appears to be a promising strategy for allergic disease prevention, but additional study is necessary. Air pollution and tobacco smoke are highly associated with allergic disease, among other medical comorbidities, paving the way for campaigns and legislation to reduce these exposures. There is no clear evidence that oral vitamin D supplementation, prebiotic or probiotic supplementation, daily emollient application, and antiviral prophylaxis are effective in preventing atopic disease, but these interventions require further study.

Summary

While some environmental interventions have a well-defined role in the prevention of atopic disease, additional study of many remaining interventions is necessary to enhance our understanding of their role in disease prevention. Alignment of research findings from randomized controlled trials with public policy is essential to develop meaningful public health outcomes and prevent allergic disease on the population level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CO2 :

Carbon dioxide

CS:

Cesarian section

DNA:

Deoxyribonucleic acid

EASI:

Eczema area and severity index

EAT:

Enquiring about tolerance

ETS:

Environmental tobacco smoke

ICS:

Inhaled corticosteroid

IL:

Interleukin

ILC:

Innate lymphoid cell

ISAAC:

International Study of Asthma, and Allergies in Children

IU:

International unit

LEAP:

Learning Early About Peanut

MDI:

Maternal dietary index

NIAID:

National Institute of Allergy and Infectious Disease

NDVI:

Normalized difference vegetation index

NO2 :

Nitrogen dioxide

OFC:

Oral food challenge

OMIP:

Oral mucosal immunoprophylaxis

OR:

Odds ratio

PASTURE:

Protection against Allergy: Study in Rural Environments

PCR:

Polymerase chain reaction

PM:

Particulate matter

RCT:

Randomized, controlled trial

ROS:

Reactive oxidative species

RSV:

Respiratory syncytial virus

RV:

Rhinovirus

SCFA:

Short chain fatty acid

SCORAD:

Scoring atopic dermatitis

SUNBEAM:

Systems Biology of Early Atopy

sIgE:

Specific IgE

SPT:

Skin prick test

SO2 :

Sulfur dioxide

TEWL:

Transepidermal water loss

TGF-β:

Transforming growth factor β

Th2:

T helper 2

Th17:

T helper 17

Treg :

T regulatory

TRAP:

Traffic related air pollution

VKDA:

Vitamin D kids asthma

References

Papers of particular interest, published recently, have been highlighted as: •  Of importance •• Of major importance

  1. Odhiambo JA, et al. Global variations in prevalence of eczema symptoms in children from ISAAC Phase Three. J Allergy Clin Immunol. 2009;124(6):1251-8 e23.

    Article  PubMed  Google Scholar 

  2. Warren CM, Jiang J, Gupta RS. Epidemiology and burden of food allergy. Curr Allergy Asthma Rep. 2020;20(2):6.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Asher MI, et al. Trends in worldwide asthma prevalence. Eur Respir J. 2020;56(6).

  4. Braun-Fahrlander C, et al. Environmental exposure to endotoxin and its relation to asthma in school-age children. N Engl J Med. 2002;347(12):869–77.

    Article  PubMed  Google Scholar 

  5. Gao Y, et al. The maternal gut microbiome during pregnancy and offspring allergy and asthma. J Allergy Clin Immunol. 2021;148(3):669–78.

    Article  CAS  PubMed  Google Scholar 

  6. Mitselou N, et al. Cesarean delivery, preterm birth, and risk of food allergy: nationwide Swedish cohort study of more than 1 million children. J Allergy Clin Immunol. 2018;142(5):1510-1514 e2.

    Article  PubMed  Google Scholar 

  7. Eggesbo M, et al. Is delivery by cesarean section a risk factor for food allergy? J Allergy Clin Immunol. 2003;112(2):420–6.

    Article  PubMed  Google Scholar 

  8. Lisik D, et al. Is sibship composition a risk factor for childhood asthma? Systematic review and meta-analysis. World J Pediatr. 2023;19(12):1127–38.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Stein M, et al. The role of Helminth infection and environment in the development of allergy: a prospective study of newly-arrived Ethiopian immigrants in Israel. PLoS Negl Trop Dis. 2016;10(1):e0004208.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Staal SL, et al. Prevalence of atopy following mass drug administration with albendazole: a study in school children on Flores Island. Indonesia Int Arch Allergy Immunol. 2018;177(3):192–8.

    Article  CAS  PubMed  Google Scholar 

  11. Tsilochristou O, et al. Association of Staphylococcus aureus colonization with food allergy occurs independently of eczema severity. J Allergy Clin Immunol. 2019;144(2):494–503.

    Article  PubMed  Google Scholar 

  12. Gensollen T, et al. How colonization by microbiota in early life shapes the immune system. Science. 2016;352(6285):539–44.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  13. Doreswamy V, Peden DB. Modulation of asthma by endotoxin. Clin Exp Allergy. 2011;41(1):9–19.

    Article  CAS  PubMed  Google Scholar 

  14. Carnes MU, et al. House dust endotoxin levels are associated with adult asthma in a U.S. farming population. Ann Am Thorac Soc. 2017;14(3):324–31.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Celebi Sozener Z, et al. Environmental factors in epithelial barrier dysfunction. J Allergy Clin Immunol. 2020;145(6):1517–28.

    Article  CAS  PubMed  Google Scholar 

  16. Moran TP. The external exposome and food allergy. Curr Allergy Asthma Rep. 2020;20(8):37.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Moran TP. Impact of the exposome on food allergy development. Curr Opin Allergy Clin Immunol. 2023;23(2):164–71.

    Article  CAS  PubMed  Google Scholar 

  18. Amini H, Amini M, Wright RO. Climate change, exposome change, and allergy: a review. Immunol Allergy Clin North Am. 2024;44(1):1–13.

    Article  PubMed  Google Scholar 

  19. Celebi Sozener Z, et al. Epithelial barrier hypothesis: Effect of the external exposome on the microbiome and epithelial barriers in allergic disease. Allergy. 2022;77(5):1418–49.

    Article  PubMed  Google Scholar 

  20. Winslow A, Keet CA. Preventing allergies through the skin. Ann Allergy Asthma Immunol. 2022;129(3):276–85.

    Article  CAS  PubMed  Google Scholar 

  21. Theodoratou E, et al. Vitamin D and multiple health outcomes: umbrella review of systematic reviews and meta-analyses of observational studies and randomised trials. BMJ. 2014;348:g2035.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Matheu V, et al. Dual effects of vitamin D-induced alteration of TH1/TH2 cytokine expression: enhancing IgE production and decreasing airway eosinophilia in murine allergic airway disease. J Allergy Clin Immunol. 2003;112(3):585–92.

    Article  CAS  PubMed  Google Scholar 

  23. Heine G, et al. 1,25-dihydroxyvitamin D(3) promotes IL-10 production in human B cells. Eur J Immunol. 2008;38(8):2210–8.

    Article  CAS  PubMed  Google Scholar 

  24. Jeffery LE, et al. 1,25-Dihydroxyvitamin D3 and IL-2 combine to inhibit T cell production of inflammatory cytokines and promote development of regulatory T cells expressing CTLA-4 and FoxP3. J Immunol. 2009;183(9):5458–67.

    Article  CAS  PubMed  Google Scholar 

  25. James J, Weaver V, Cantorna MT. Control of circulating IgE by the vitamin D receptor in vivo involves B cell intrinsic and extrinsic mechanisms. J Immunol. 2017;198(3):1164–71.

    Article  CAS  PubMed  Google Scholar 

  26. Goldring ST, et al. Prenatal vitamin d supplementation and child respiratory health: a randomised controlled trial. PLoS ONE. 2013;8(6):e66627.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  27. Litonjua AA, et al. Effect of prenatal supplementation with vitamin D on asthma or recurrent wheezing in offspring by age 3 years: the VDAART randomized clinical trial. JAMA. 2016;315(4):362–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chawes BL, et al. Effect of vitamin D3 supplementation during pregnancy on risk of persistent wheeze in the offspring: a randomized clinical trial. JAMA. 2016;315(4):353–61.

    Article  CAS  PubMed  Google Scholar 

  29. Forno E, et al. Effect of vitamin D3 supplementation on severe asthma exacerbations in children with asthma and low vitamin D levels: The VDKA Randomized Clinical Trial. JAMA. 2020;324(8):752–60.

    Article  CAS  PubMed  Google Scholar 

  30. Rosser FJ, et al. Effect of vitamin D supplementation on total and allergen-specific IgE in children with asthma and low vitamin D levels. J Allergy Clin Immunol. 2022;149(1):440-444 e2.

    Article  CAS  PubMed  Google Scholar 

  31. Williamson A, et al. Vitamin D for the management of asthma. Cochrane Database Syst Rev. 2023;2(2):CD011511.

    PubMed  Google Scholar 

  32. Allen KJ, et al. VITALITY trial: protocol for a randomised controlled trial to establish the role of postnatal vitamin D supplementation in infant immune health. BMJ Open. 2015;5(12):e009377.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Fleischer DM, et al. A consensus approach to the primary prevention of food allergy through nutrition: guidance from the American Academy of Allergy, Asthma, and Immunology; American College of Allergy, Asthma, and Immunology; and the Canadian Society for Allergy and Clinical Immunology. J Allergy Clin Immunol Pract. 2021;9(1):22-43 e4.

    Article  CAS  PubMed  Google Scholar 

  34. Abrams EM, et al. Dietary exposures and allergy prevention in high-risk infants. Allergy Asthma Clin Immunol. 2022;18(1):36.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yepes-Nunez JJ, et al. World Allergy Organization-McMaster University Guidelines for Allergic Disease Prevention (GLAD-P): Vitamin D. World Allergy Organ J. 2016;9:17.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Abrams EM, et al. Prevention of food allergy in infancy: the role of maternal interventions and exposures during pregnancy and lactation. Lancet Child Adolesc Health. 2023;7(5):358–66.

    Article  CAS  PubMed  Google Scholar 

  37. Renz H, Skevaki C. Early life microbial exposures and allergy risks: opportunities for prevention. Nat Rev Immunol. 2021;21(3):177–91.

    Article  CAS  PubMed  Google Scholar 

  38. Garcia-Larsen V, et al. Diet during pregnancy and infancy and risk of allergic or autoimmune disease: A systematic review and meta-analysis. PLoS Med. 2018;15(2):e1002507.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Fiocchi A, Cabana MD, Mennini M. Current use of probiotics and prebiotics in allergy. J Allergy Clin Immunol Pract. 2022;10(9):2219–42.

    Article  CAS  PubMed  Google Scholar 

  40. Korpela K, et al. Maternal fecal microbiota transplantation in cesarean-born infants rapidly restores normal gut microbial development: a proof-of-concept study. Cell. 2020;183(2):324-334.e5.

    Article  CAS  PubMed  Google Scholar 

  41. Wilson BC, et al. Oral administration of maternal vaginal microbes at birth to restore gut microbiome development in infants born by caesarean section: a pilot randomised placebo-controlled trial. EBioMedicine. 2021;69:103443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vance GH, et al. Exposure of the fetus and infant to hens’ egg ovalbumin via the placenta and breast milk in relation to maternal intake of dietary egg. Clin Exp Allergy. 2005;35(10):1318–26.

    Article  CAS  PubMed  Google Scholar 

  43. Palmer DJ, Gold MS, Makrides M. Effect of cooked and raw egg consumption on ovalbumin content of human milk: a randomized, double-blind, cross-over trial. Clin Exp Allergy. 2005;35(2):173–8.

    Article  CAS  PubMed  Google Scholar 

  44. Palmer DJ, Gold MS, Makrides M. Effect of maternal egg consumption on breast milk ovalbumin concentration. Clin Exp Allergy. 2008;38(7):1186–91.

    Article  CAS  PubMed  Google Scholar 

  45. Gamirova A, et al. Food proteins in human breast milk and probability of IgE-mediated allergic reaction in children during breastfeeding: a systematic review. J Allergy Clin Immunol Pract. 2022;10(5):1312-1324.e8.

    Article  CAS  PubMed  Google Scholar 

  46. Kramer MS, et al. Maternal dietary antigen avoidance during pregnancy or lactation, or both, for preventing or treating atopic disease in the child. Cochrane Database Syst Rev. 2012;2012(9):Cd000133.

    PubMed  PubMed Central  Google Scholar 

  47. Halken S, et al. EAACI guideline: Preventing the development of food allergy in infants and young children (2020 update). Pediatr Allergy Immunol. 2021;32(5):843–58.

    Article  PubMed  Google Scholar 

  48. Fleischer DM, et al. A consensus approach to the primary prevention of food allergy through nutrition: guidance from the American Academy of Allergy, Asthma, and Immunology; American College of Allergy, Asthma, and Immunology; and the Canadian Society for Allergy and Clinical Immunology. J Allergy Clin Immunol Pract. 2021;9(1):22-43.e4.

    Article  CAS  PubMed  Google Scholar 

  49. Du Toit G, et al. Randomized trial of peanut consumption in infants at risk for peanut allergy. N Engl J Med. 2015;372(9):803–13.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Perkin MR, et al. Randomized trial of introduction of allergenic foods in breast-fed infants. N Engl J Med. 2016;374(18):1733–43.

    Article  CAS  PubMed  Google Scholar 

  51. Togias A CS, et al. Addendum guidelines for the prevention of peanut allergy in the United States: report of the National Institute of Allergy and Infectious Diseases–sponsored expert panel. World Allergy Organ J. 2017;10:1–8.

    Article  PubMed Central  Google Scholar 

  52. •• Venter C, et al. The maternal diet index in pregnancy is associated with offspring allergic diseases: the Healthy Start study. Allergy. 2022;77(1):162–72. This study associated prenatal and postnatal exposures to air pollution with increased childhood food allergy prevalence by 4 years of age.

    Article  PubMed  Google Scholar 

  53. Roduit C, et al. High levels of butyrate and propionate in early life are associated with protection against atopy. Allergy. 2019;74(4):799–809.

    Article  CAS  PubMed  Google Scholar 

  54. Asnicar F, et al. Microbiome connections with host metabolism and habitual diet from 1,098 deeply phenotyped individuals. Nat Med. 2021;27(2):321–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Smith PK, et al. The false alarm hypothesis: food allergy is associated with high dietary advanced glycation end-products and proglycating dietary sugars that mimic alarmins. J Allergy Clin Immunol. 2017;139(2):429–37.

    Article  CAS  PubMed  Google Scholar 

  56. Venter C. Immunonutrition: diet diversity, gut microbiome and prevention of allergic diseases. Allergy Asthma Immunol Res. 2023;15(5):545–61.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Roduit C, et al. Increased food diversity in the first year of life is inversely associated with allergic diseases. J Allergy Clin Immunol. 2014;133(4):1056–64.

    Article  PubMed  Google Scholar 

  58. Nwaru BI, et al. Food diversity in infancy and the risk of childhood asthma and allergies. J Allergy Clin Immunol. 2014;133(4):1084–91.

    Article  PubMed  Google Scholar 

  59. •• Zhong C, et al. Increased food diversity in the first year of life is inversely associated with allergic outcomes in the second year. Pediatr Allergy Immunol. 2022;33(1):e13707. The findings suggest that food diversity is inversely related to allergic disease and food allergy in a dose-dependent manner at 12-24 months old.

    Article  PubMed  Google Scholar 

  60. Quake AZ, et al. Early introduction of multi-allergen mixture for prevention of food allergy: pilot study. Nutrients. 2022;14(4).

  61. Mukharesh L, Phipatanakul W, Gaffin JM. Air pollution and childhood asthma. Curr Opin Allergy Clin Immunol. 2023;23(2):100–10.

    Article  PubMed  Google Scholar 

  62. Stefanovic N, Irvine AD, Flohr C. The Role of the Environment and exposome in atopic dermatitis. Curr Treat Options Allergy. 2021;8(3):222–41.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Centers for Disease C, et al. Publications and reports of the surgeon general, in How Tobacco Smoke Causes Disease: The Biology and Behavioral Basis for Smoking-Attributable Disease: A Report of the Surgeon General. 2010, Centers for Disease Control and Prevention (US): Atlanta (GA).

  64. McEvoy CT, Spindel ER. Pulmonary effects of maternal smoking on the fetus and child: effects on lung development, respiratory morbidities, and life long lung health. Paediatr Respir Rev. 2017;21:27–33.

    PubMed  Google Scholar 

  65. Joglekar R, et al. Maternal tobacco smoke exposure is associated with increased DNA methylation at human metastable epialleles in infant cord blood. Environ Epigenet. 2022;8(1):dvac005.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Miller RL, Peden DB. Environmental effects on immune responses in patients with atopy and asthma. J Allergy Clin Immunol. 2014;134(5):1001–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hassoun Y, James C, Bernstein DI. The Effects of Air Pollution on the Development of Atopic Disease. Clin Rev Allergy Immunol. 2019;57(3):403–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Johnson NM, et al. Air pollution and children’s health-a review of adverse effects associated with prenatal exposure from fine to ultrafine particulate matter. Environ Health Prev Med. 2021;26(1):72.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Fadadu RP, et al. Air Pollution and atopic dermatitis, from molecular mechanisms to population-level evidence: a review. Int J Environ Res Public Health. 2023;20(3).

  70. Brauer M, et al. Air pollution and development of asthma, allergy and infections in a birth cohort. Eur Respir J. 2007;29(5):879–88.

    Article  CAS  PubMed  Google Scholar 

  71. Gruzieva O, et al. Meta-analysis of air pollution exposure association with allergic sensitization in European birth cohorts. J Allergy Clin Immunol. 2014;133(3):767-76.e7.

    Article  CAS  PubMed  Google Scholar 

  72. • Zhang X, et al. Early-life exposure to air pollution associated with food allergy in children: implications for “one allergy” concept. Environ Res. 2023;216(Pt 3):114713. This study associated prenatal and postnatal exposures to air pollution with increased childhood food allergy prevalence by 4 years of age.

    Article  CAS  PubMed  Google Scholar 

  73. Turner S, et al. Associations between a smoke-free homes intervention and childhood admissions to hospital in Scotland: an interrupted time-series analysis of whole-population data. Lancet Public Health. 2020;5(9):e493–500.

    Article  PubMed  Google Scholar 

  74. Faber T, et al. Smoke-free legislation and child health. NPJ Prim Care Respir Med. 2016;26:16067.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Li S, Williams G, Guo Y. Health benefits from improved outdoor air quality and intervention in China. Environ Pollut. 2016;214:17–25.

    Article  CAS  PubMed  Google Scholar 

  76. Jartti T, Gern JE. Role of viral infections in the development and exacerbation of asthma in children. J Allergy Clin Immunol. 2017;140(4):895–906.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Jackson DJ, Gern JE. Rhinovirus infections and their roles in asthma: etiology and exacerbations. J Allergy Clin Immunol Pract. 2022;10(3):673–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Duerr CU, et al. Type I interferon restricts type 2 immunopathology through the regulation of group 2 innate lymphoid cells. Nat Immunol. 2016;17(1):65–75.

    Article  CAS  PubMed  Google Scholar 

  79. Mochizuki H, et al. Palivizumab prophylaxis in preterm infants and subsequent recurrent wheezing. Six-year follow-up study. Am J Respir Crit Care Med. 2017;196(1):29–38.

    Article  PubMed  Google Scholar 

  80. Simoes EA, et al. The effect of respiratory syncytial virus on subsequent recurrent wheezing in atopic and nonatopic children. J Allergy Clin Immunol. 2010;126(2):256–62.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Skjerven HO, et al. Skin emollient and early complementary feeding to prevent infant atopic dermatitis (PreventADALL): a factorial, multicentre, cluster-randomised trial. Lancet. 2020;395(10228):951–61.

    Article  PubMed  Google Scholar 

  82. Chalmers JR, et al. Daily emollient during infancy for prevention of eczema: the BEEP randomised controlled trial. Lancet. 2020;395(10228):962–72.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Kelleher MM, et al. Skincare interventions in infants for preventing eczema and food allergy: A cochrane systematic review and individual participant data meta-analysis. Clin Exp Allergy. 2021;51(3):402–18.

    Article  PubMed  Google Scholar 

  84. Brough HA, et al. Epicutaneous sensitization in the development of food allergy: What is the evidence and how can this be prevented? Allergy. 2020;75(9):2185–205.

    Article  PubMed  Google Scholar 

  85. Jabbar-Lopez ZK, et al. Randomized controlled pilot trial with ion-exchange water softeners to prevent eczema (SOFTER trial). Clin Exp Allergy. 2022;52(3):405–15.

    Article  CAS  PubMed  Google Scholar 

  86. Agache I, et al. Climate change and global health: a call to more research and more action. Allergy. 2022;77(5):1389–407.

    Article  PubMed  Google Scholar 

  87. Rauer D, et al. Ragweed plants grown under elevated CO(2) levels produce pollen which elicit stronger allergic lung inflammation. Allergy. 2021;76(6):1718–30.

    Article  CAS  PubMed  Google Scholar 

  88. Lu C, et al. Interaction effect of prenatal and postnatal exposure to ambient air pollution and temperature on childhood asthma. Environ Int. 2022;167:107456.

    Article  CAS  PubMed  Google Scholar 

  89. Munoz-Cano R, et al. Mechanisms, cofactors, and augmenting factors involved in anaphylaxis. Front Immunol. 2017;8:1193.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Paciência I, et al. Neighbourhood green and blue spaces and allergic sensitization in children: A longitudinal study based on repeated measures from the Generation XXI cohort. Sci Total Environ. 2021;772:145394.

    Article  PubMed  ADS  Google Scholar 

  91. Peters RL, et al. The association between environmental greenness and the risk of food allergy: a population-based study in Melbourne, Australia. Pediatr Allergy Immunol. 2022;33(2):e13749.

    Article  PubMed  Google Scholar 

  92. Neuman A, et al. Maternal smoking in pregnancy and asthma in preschool children: a pooled analysis of eight birth cohorts. Am J Respir Crit Care Med. 2012;186(10):1037–43.

    Article  PubMed  Google Scholar 

  93. Keet C, et al. The SunBEAm birth cohort: Protocol design. J Allergy Clin Immunol Glob. 2023;2(3).

Download references

Author information

Authors and Affiliations

Authors

Contributions

S.P. performed literature search, wrote the abstract, prepared Tables 1 and 2, and reviewed the manuscript; A.D. revised the abstract and the manuscript; A.W. wrote and finalized the main manuscript text and prepared Tables 1 and 2.

Corresponding author

Correspondence to Andrew Winslow.

Ethics declarations

Conflict of Interest

The authors did not receive support from any organization for the submitted work. The authors have no relevant financial or non-financial interests to disclose.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pfirrman, S., Devonshire, A. & Winslow, A. Environmental Interventions for Preventing Atopic Diseases. Curr Allergy Asthma Rep (2024). https://doi.org/10.1007/s11882-024-01141-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11882-024-01141-1

Keywords

Navigation