Skip to main content

Advertisement

Log in

Allergic Sensitization and the Environment: Latest Update

  • Allergies and the Environment (RL Miller, Section Editor)
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

The prevalence of asthma and other allergic diseases is still increasing both in developed and developing countries. Allergic sensitization against common inhalant allergens is common and, although not sufficient, a necessary step in the development of allergic diseases. Despite a small number of proteins from certain plants and animals being common allergens in humans, we still do not fully understand who will develop sensitization and to which allergens. Environmental exposure to these allergens is essential for the development of sensitization, but what has emerged clearly in the literature in the recent years is that the adjuvants to which an individual is exposed at the same time as the allergen are probably an equally important determinant of the immune response to the allergen. These adjuvants act on all steps in the development of sensitization from modifying epithelial barriers, to facilitating antigen presentation, to driving T-cell responses, to altering mast cell and basophil hyperreactivity. The adjuvants come from biogenic sources, including microbes and the plants and animals that produce the allergens, and from man-made sources (anthropogenic), including unintended by-products of combustion and chemicals now ubiquitous in modern life. As we better understand how individuals are exposed to these adjuvants and how the exposure influences the likelihood of an allergic response, we may be able to design individual and community-level interventions that will reverse the increase in allergic disease prevalence, but we are not there yet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Eder W, Ege MJ, von Mutius E. The asthma epidemic. N Engl J Med. 2006;355:2226–35.

    Article  CAS  PubMed  Google Scholar 

  2. Poulos LM, Toelle BG, Marks GB. The burden of asthma in children: an Australian perspective. Paediatr Respir Rev. 2005;6:20–7.

    Article  PubMed  Google Scholar 

  3. Addo-Yobo EO, Woodcock A, Allotey A, et al. Exercise-induced bronchospasm and atopy in Ghana: two surveys ten years apart. PLoS Med. 2007;4:e70.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Yangzong Y, Shi Z, Nafstad P, et al. The prevalence of childhood asthma in China: a systematic review. BMC Public Health. 2012;12:860.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Bai J, Zhao J, Shen KL, et al. Current trends of the prevalence of childhood asthma in three Chinese cities: a multicenter epidemiological survey. Biomed Environ Sci. 2010;23:453–7.

    Article  PubMed  Google Scholar 

  6. Garg R, Karpati A, Leighton J, et al. Asthma facts. Second edition. New York City Department of Health and Mental Hygiene 2003.

  7. Abbas A, Lichtman A, Pillai S. Cellular and molecular immunology 7th edn. Elsevier Health Sciences; 2011.

  8. Sicherer SH, Sampson HA. Food allergy: epidemiology, pathogenesis, diagnosis, and treatment. J Allergy Clin Immunol. 2014;133:291–307. quiz 8.

    Article  CAS  PubMed  Google Scholar 

  9. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010;11:373–84.

    Article  CAS  PubMed  Google Scholar 

  10. Peters JL, Boynton-Jarrett R, Sandel M. Prenatal environmental factors influencing IgE levels, atopy and early asthma. Curr Opin Allergy Clin Immunol. 2013;13:187–92. This review article presents evidence for prenatal exposures influencing the development of allergic disease. It seems likely that this is an important time period where exposures may increase the later susceptibility to allergen exposure. The article also discusses the challenges of examining in utero exposures.

    Article  CAS  PubMed  Google Scholar 

  11. Aalberse RC. Structural features of allergenic molecules. Chem Immunol Allergy. 2006;91:134–46.

    Article  CAS  PubMed  Google Scholar 

  12. Traidl-Hoffmann C, Jakob T, Behrendt H. Determinants of allergenicity. J Allergy Clin Immunol. 2009;123:558–66.

    Article  CAS  PubMed  Google Scholar 

  13. Golebski K, Roschmann KI, Toppila-Salmi S, et al. The multi-faceted role of allergen exposure to the local airway mucosa. Allergy. 2013;68:152–60. This review article describes the recent advances in our understanding of how allergen exposure can influence the airway epithelium. It discusses the importance of the epithelial cells beyond just a physical barrier in the development of allergic disease.

    Article  CAS  PubMed  Google Scholar 

  14. Holgate ST. The sentinel role of the airway epithelium in asthma pathogenesis. Immunol Rev. 2011;242:205–19.

    Article  CAS  PubMed  Google Scholar 

  15. Lambrecht BN, Hammad H. The airway epithelium in asthma. Nat Med. 2012;18:684–92. This is an excellent review of the current findings on the role of the airway epithelium in asthma and allergic sensitization. Particularly relevant to the current topic is the discussion of the role of epithelial cells in bridging the gap between the innate and adaptive immune responses.

    Article  CAS  PubMed  Google Scholar 

  16. Gough L, Sewell HF, Shakib F. The proteolytic activity of the major dust mite allergen Der p 1 enhances the IgE antibody response to a bystander antigen. Clin Exp Allergy. 2001;31:1594–8.

    Article  CAS  PubMed  Google Scholar 

  17. Herbert CA, King CM, Ring PC, et al. Augmentation of permeability in the bronchial epithelium by the house dust mite allergen Der p1. Am J Respir Cell Mol Biol. 1995;12:369–78.

    Article  CAS  PubMed  Google Scholar 

  18. Maruo K, Akaike T, Ono T, et al. Generation of anaphylatoxins through proteolytic processing of C3 and C5 by house dust mite protease. J Allergy Clin Immunol. 1997;100:253–60.

    Article  CAS  PubMed  Google Scholar 

  19. Grunstein MM, Veler H, Shan X, et al. Proasthmatic effects and mechanisms of action of the dust mite allergen, Der p 1, in airway smooth muscle. J Allergy Clin Immunol. 2005;116:94–101.

    Article  CAS  PubMed  Google Scholar 

  20. Heijink IH, Nawijn MC, Hackett TL. Airway epithelial barrier function regulates the pathogenesis of allergic asthma. Clin Exp Allergy. 2014;44:620–30. This review article focuses on the epithelial barrier and allergic asthma. Of particular interest is the discussion of changes in the epithelial barrier that increase susceptibility to allergic sensitization.

  21. Hammad H, Chieppa M, Perros F, et al. House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. Nat Med. 2009;15:410–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Nathan AT, Peterson EA, Chakir J, et al. Innate immune responses of airway epithelium to house dust mite are mediated through beta-glucan-dependent pathways. J Allergy Clin Immunol. 2009;123:612–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Trompette A, Divanovic S, Visintin A, et al. Allergenicity resulting from functional mimicry of a Toll-like receptor complex protein. Nature. 2009;457:585–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Mueller GA, Edwards LL, Aloor JJ, et al. The structure of the dust mite allergen Der p 7 reveals similarities to innate immune proteins. J Allergy Clin Immunol. 2010;125:909–17. e4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Ebeling C, Forsythe P, Ng J, et al. Proteinase-activated receptor 2 activation in the airways enhances antigen-mediated airway inflammation and airway hyperresponsiveness through different pathways. J Allergy Clin Immunol. 2005;115:623–30.

    Article  CAS  PubMed  Google Scholar 

  26. Post S, Heijink IH, Petersen AH, et al. Protease-activated receptor-2 activation contributes to house dust mite-induced IgE responses in mice. PLoS One. 2014;9:e91206.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Norimoto A, Hirose K, Iwata A, et al. Dectin-2 promotes house dust mite-induced Th2 and Th17 cell differentiation and allergic airway inflammation in mice. Am J Respir Cell Mol Biol. 2014.

  28. Salazar F, Sewell HF, Shakib F, et al. The role of lectins in allergic sensitization and allergic disease. J Allergy Clin Immunol. 2013;132:27–36.

    Article  CAS  PubMed  Google Scholar 

  29. Platts-Mills T, Vaughan J, Squillace S, et al. Sensitisation, asthma, and a modified Th2 response in children exposed to cat allergen: a population-based cross-sectional study. Lancet. 2001;357:752–6.

    Article  CAS  PubMed  Google Scholar 

  30. Reefer AJ, Carneiro RM, Custis NJ, et al. A role for IL-10-mediated HLA-DR7-restricted T cell-dependent events in development of the modified Th2 response to cat allergen. J Immunol. 2004;172:2763–72.

    Article  CAS  PubMed  Google Scholar 

  31. Bateman EA, Ardern-Jones MR, Ogg GS. Identification of an immunodominant region of Fel d 1 and characterization of constituent epitopes. Clin Exp Allergy. 2008;38:1760–8.

    CAS  PubMed  Google Scholar 

  32. Brooks C, Pearce N, Douwes J. The hygiene hypothesis in allergy and asthma: an update. Curr Opin Allergy Clin Immunol. 2013;13:70–7.

    Article  PubMed  Google Scholar 

  33. Braun-Fahrlander C, Riedler J, Herz U, et al. Environmental exposure to endotoxin and its relation to asthma in school-age children. N Engl J Med. 2002;347:869–77.

    Article  PubMed  Google Scholar 

  34. Eisenbarth SC, Piggott DA, Huleatt JW, et al. Lipopolysaccharide-enhanced, Toll-like receptor 4-dependent T helper cell type 2 responses to inhaled antigen. J Exp Med. 2002;196:1645–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Eduard W, Heederik D, Duchaine C, et al. Bioaerosol exposure assessment in the workplace: the past, present and recent advances. J Environ Monit. 2012;14:334–9.

    Article  CAS  PubMed  Google Scholar 

  36. Ege MJ, Mayer M, Normand AC, et al. Exposure to environmental microorganisms and childhood asthma. N Engl J Med. 2011;364:701–9. In this paper, the authors combined two large cross-sectional studies of asthma to examine the relevance of microbial exposure. The primary findings discussed are for asthma, but there was also in inverse association between gram-negative bacteria exposure and allergic sensitization.

    Article  CAS  PubMed  Google Scholar 

  37. Sordillo JE, Hoffman EB, Celedon JC, et al. Multiple microbial exposures in the home may protect against asthma or allergy in childhood. Clin Exp Allergy. 2010;40:902–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Bendiks M, Kopp MV. The relationship between advances in understanding the microbiome and the maturing hygiene hypothesis. Curr Allergy Asthma Rep. 2013;13:487–94.

    Article  PubMed  Google Scholar 

  39. Bisgaard H, Li N, Bonnelykke K, et al. Reduced diversity of the intestinal microbiota during infancy is associated with increased risk of allergic disease at school age. J Allergy Clin Immunol. 2011;128:646–52. e1-5. This paper reports findings from a prospective early childhood cohort study of asthma among at risk children. They found that increased intestinal microbiota diversity measured during infancy was associated with decreased risk of allergic sensitization at age 6 years.

    Article  PubMed  Google Scholar 

  40. Hanski I, von Hertzen L, Fyhrquist N, et al. Environmental biodiversity, human microbiota, and allergy are interrelated. Proc Natl Acad Sci U S A. 2012;109:8334–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Fujimura KE, Demoor T, Rauch M, et al. House dust exposure mediates gut microbiome Lactobacillus enrichment and airway immune defense against allergens and virus infection. Proc Natl Acad Sci U S A. 2014;111:805–10. With this study, researchers characterized the bacterial communities in the dust from homes with and without dogs. They then exposed mice to dust from the homes with dogs and demonstrated an alteration in the microbiome of the mice and decrease in the ability of the mice to become sensitized to cockroach allergen. These exciting findings suggest a complex interplay between microbes in the domestic environment, microbes in the gut and the development of allergic sensitization to non-microbial domestic allergens.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Diaz-Sanchez D, Garcia MP, Wang M, et al. Nasal challenge with diesel exhaust particles can induce sensitization to a neoallergen in the human mucosa. J Allergy Clin Immunol. 1999;104:1183–8.

    Article  CAS  PubMed  Google Scholar 

  43. Diaz-Sanchez D, Tsien A, Casillas A, et al. Enhanced nasal cytokine production in human beings after in vivo challenge with diesel exhaust particles. J Allergy Clin Immunol. 1996;98:114–23.

    Article  CAS  PubMed  Google Scholar 

  44. Diaz-Sanchez D, Tsien A, Fleming J, et al. Combined diesel exhaust particulate and ragweed allergen challenge markedly enhances human in vivo nasal ragweed-specific IgE and skews cytokine production to a T helper cell 2-type pattern. J Immunol. 1997;158:2406–13.

    CAS  PubMed  Google Scholar 

  45. Diaz-Sanchez D, Penichet-Garcia M, Saxon A. Diesel exhaust particles directly induce activated mast cells to degranulate and increase histamine levels and symptom severity. J Allergy Clin Immunol. 2000;106:1140–6.

    Article  CAS  PubMed  Google Scholar 

  46. Li N, Harkema JR, Lewandowski RP, et al. Ambient ultrafine particles provide a strong adjuvant effect in the secondary immune response: implication for traffic-related asthma flares. Am J Physiol Lung Cell Mol Physiol. 2010;299:L374–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Chan RC, Wang M, Li N, et al. Pro-oxidative diesel exhaust particle chemicals inhibit LPS-induced dendritic cell responses involved in T-helper differentiation. J Allergy Clin Immunol. 2006;118:455–65.

    Article  CAS  PubMed  Google Scholar 

  48. Williams MA, Rangasamy T, Bauer SM, et al. Disruption of the transcription factor Nrf2 promotes pro-oxidative dendritic cells that stimulate Th2-like immunoresponsiveness upon activation by ambient particulate matter. J Immunol. 2008;181:4545–59.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Whitekus MJ, Li N, Zhang M, et al. Thiol antioxidants inhibit the adjuvant effects of aerosolized diesel exhaust particles in a murine model for ovalbumin sensitization. J Immunol. 2002;168:2560–7.

    Article  CAS  PubMed  Google Scholar 

  50. Diaz-Sanchez D, Jyrala M, Ng D, et al. In vivo nasal challenge with diesel exhaust particles enhances expression of the CC chemokines rantes, MIP-1alpha, and MCP-3 in humans. Clin Immunol. 2000;97:140–5.

    Article  CAS  PubMed  Google Scholar 

  51. Provoost S, Maes T, Joos GF, et al. Monocyte-derived dendritic cell recruitment and allergic T(H)2 responses after exposure to diesel particles are CCR2 dependent. J Allergy Clin Immunol. 2012;129:483–91. These recent findings further advance the understanding of the adjuvant mechanism of DEP on allergic sensitization. The authors demonstrate that monocyte-derived dendritic cells are recruited through a CCR2-dependent mechanism.

    Article  CAS  PubMed  Google Scholar 

  52. Nadeau K, McDonald-Hyman C, Noth EM, et al. Ambient air pollution impairs regulatory T-cell function in asthma. J Allergy Clin Immunol. 2010;126:845–52. e10.

    Article  CAS  PubMed  Google Scholar 

  53. Li N, Wang M, Bramble LA, et al. The adjuvant effect of ambient particulate matter is closely reflected by the particulate oxidant potential. Environ Health Perspect. 2009;117:1116–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Perzanowski MS, Chew GL, Divjan A, et al. Early-life cockroach allergen and polycyclic aromatic hydrocarbon exposures predict cockroach sensitization among inner-city children. J Allergy Clin Immunol. 2013;131:886–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Gilliland FD, Li YF, Saxon A, et al. Effect of glutathione-S-transferase M1 and P1 genotypes on xenobiotic enhancement of allergic responses: randomised, placebo-controlled crossover study. Lancet. 2004;363:119–25.

    Article  CAS  PubMed  Google Scholar 

  56. Hollingsworth JW, Free ME, Li Z, et al. Ozone activates pulmonary dendritic cells and promotes allergic sensitization through a Toll-like receptor 4-dependent mechanism. J Allergy Clin Immunol. 2010;125:1167–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Ciaccio CE, Gentile D. Effects of tobacco smoke exposure in childhood on atopic diseases. Curr Allergy Asthma Rep. 2013;13:687–92.

    Article  CAS  PubMed  Google Scholar 

  58. Havstad SL, Johnson CC, Zoratti EM, et al. Tobacco smoke exposure and allergic sensitization in children: a propensity score analysis. Respirology. 2012;17:1068–72.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Salo PM, Arbes SJ Jr., Jaramillo R, et al. Prevalence of allergic sensitization in the United States: results from the National Health and Nutrition Examination Survey (NHANES) 2005–2006. J Allergy Clin Immunol. 2014.

  60. Silva MJ, Barr DB, Reidy JA, et al. Urinary levels of seven phthalate metabolites in the U.S. population from the National Health and Nutrition Examination Survey (NHANES) 1999–2000. Environ Health Perspect. 2004;112:331–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Kolarik B, Naydenov K, Larsson M, et al. The association between phthalates in dust and allergic diseases among Bulgarian children. Environ Health Perspect. 2008;116:98–103.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Hsu NY, Lee CC, Wang JY, et al. Predicted risk of childhood allergy, asthma, and reported symptoms using measured phthalate exposure in dust and urine. Indoor Air. 2012;22:186–99.

    Article  CAS  PubMed  Google Scholar 

  63. Bornehag CG, Sundell J, Weschler CJ, et al. The association between asthma and allergic symptoms in children and phthalates in house dust: a nested case–control study. Environ Health Perspect. 2004;112:1393–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Just AC, Whyatt RM, Perzanowski MS, et al. Prenatal exposure to butylbenzyl phthalate and early eczema in an urban cohort. Environ Health Perspect. 2012;120:1475–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Whyatt RM, Perzanowski MS, Just AC, et al. Asthma in inner-city children at 5–11 years of age and prenatal exposure to phthalates: the Columbia Center for Children’s Environmental Health Cohort Environ Health Perspect 2014; in press.

  66. Just AC, Whyatt RM, Miller RL, et al. Children’s urinary phthalate metabolites and fractional exhaled nitric oxide in an urban cohort. Am J Respir Crit Care Med. 2012;186:830–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Hoppin JA, Jaramillo R, London SJ, et al. Phthalate exposure and allergy in the U.S. population: results from NHANES 2005–2006. Environ Health Perspect. 2013;121:1129–34. This study reports on findings from the large cross-sectional nationally representative US population-based study. Metabolites in urine associated with high molecular weight phthalates were positively associated with allergic sensitization, while exposure to a low molecular weight phthalate was inversely associated with allergic sensitization.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. He M, Inoue K, Yoshida S, et al. Effects of airway exposure to di-(2-ethylhexyl) phthalate on allergic rhinitis. Immunopharmacol Immunotoxicol. 2013;35:390–5.

    Article  PubMed  Google Scholar 

  69. Larsen ST, Hansen JS, Hansen EW, et al. Airway inflammation and adjuvant effect after repeated airborne exposures to di-(2-ethylhexyl)phthalate and ovalbumin in BALB/c mice. Toxicology. 2007;235:119–29.

    Article  CAS  PubMed  Google Scholar 

  70. Takano H, Yanagisawa R, Inoue K, et al. Di-(2-ethylhexyl) phthalate enhances atopic dermatitis-like skin lesions in mice. Environ Health Perspect. 2006;114:1266–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Spanier AJ, Kahn RS, Kunselman AR, et al. Prenatal exposure to bisphenol A and child wheeze from birth to 3 years of age. Environ Health Perspect. 2012;120:916–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Donohue KM, Miller RL, Perzanowski MS, et al. Prenatal and postnatal bisphenol A exposure and asthma development among inner-city children. J Allergy Clin Immunol. 2013;131:736–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Vaidya SV, Kulkarni H. Association of urinary bisphenol A concentration with allergic asthma: results from the National Health and Nutrition Examination Survey 2005–2006. J Asthma. 2012;49:800–6.

    Article  CAS  PubMed  Google Scholar 

  74. Rogers JA, Metz L, Yong VW. Review: endocrine disrupting chemicals and immune responses: a focus on bisphenol-A and its potential mechanisms. Mol Immunol. 2013;53:421–30.

    Article  CAS  PubMed  Google Scholar 

  75. Tian X, Takamoto M, Sugane K. Bisphenol A promotes IL-4 production by Th2 cells. Int Arch Allergy Immunol. 2003;132:240–7.

    Article  CAS  PubMed  Google Scholar 

  76. Midoro-Horiuti T, Tiwari R, Watson CS, et al. Maternal bisphenol a exposure promotes the development of experimental asthma in mouse pups. Environ Health Perspect. 2010;118:273–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. O’Brien E, Dolinoy DC, Mancuso P. Bisphenol A at concentrations relevant to human exposure enhances histamine and cysteinyl leukotriene release from bone marrow-derived mast cells. J Immunotoxicol. 2014;11:84–9.

    Article  PubMed  Google Scholar 

  78. Cornell AG, Chillrud SN, Mellins RB, et al. Domestic airborne black carbon and exhaled nitric oxide in children in NYC. J Expo Sci Environ Epidemiol. 2012;22:258–66.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Matsui EC. Environmental control for asthma: recent evidence. Curr Opin Allergy Clin Immunol. 2013;13:417–25.

    Article  CAS  PubMed  Google Scholar 

  80. Simpson A, Custovic A. Prevention of allergic sensitization by environmental control. Curr Allergy Asthma Rep. 2009;9:363–9.

    Article  PubMed  Google Scholar 

  81. Pelucchi C, Chatenoud L, Turati F, et al. Probiotics supplementation during pregnancy or infancy for the prevention of atopic dermatitis: a meta-analysis. Epidemiology. 2012;23:402–14.

    Article  PubMed  Google Scholar 

  82. Elazab N, Mendy A, Gasana J, et al. Probiotic administration in early life, atopy, and asthma: a meta-analysis of clinical trials. Pediatrics. 2013;132:e666–76.

    Article  PubMed  Google Scholar 

  83. Tovey ER, Marks GB. It’s time to rethink mite allergen avoidance. J Allergy Clin Immunol. 2011;128:723–7. e6. This review article nicely describes the current state of the science of dust mite allergen avoidance. It lays out the need for future research, which includes filling the critical gaps in how and where relevant allergen exposure occurs and the importance of the innate immune stimuli occurring at the same time as mite exposure.

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Young Yoo and Matthew S. Perzanowski declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew S. Perzanowski.

Additional information

This article is part of the Topical Collection on Allergies and the Environment

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoo, Y., Perzanowski, M.S. Allergic Sensitization and the Environment: Latest Update. Curr Allergy Asthma Rep 14, 465 (2014). https://doi.org/10.1007/s11882-014-0465-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11882-014-0465-1

Keywords

Navigation