Skip to main content
Log in

Nonhomogeneous quasilinear elliptic problems: linear and sublinear cases

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

We are concerned with a class of second order quasilinear elliptic equations driven by a nonhomogeneous differential operator introduced by C.A. Stuart [22] and whose study is motivated by models in Nonlinear Optics. We establish sufficient conditions for the existence of at least one or two non-negative solutions. Our analysis considers the cases when the reaction has either a sublinear or a linear growth. In the sublinear case, we also prove a nonexistence property. The proofs combine energy estimates and variational methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Ration. Mech. Anal. 63 (1976/77), 337–403.

    Article  MathSciNet  Google Scholar 

  2. J. M. Ball, Discontinuous equilibrium solutions and cavitation in nonlinear elasticity, Philos. Trans. Roy. Soc. London Ser. A 306 (1982), 557–611.

    Article  MathSciNet  Google Scholar 

  3. P. Baroni, M. Colombo and G. Mingione, Regularity for general functionals with double phase, Calc. Var. Partial Differential Equations 57 (2018), Article no. 62.

  4. P. Bartolo, V. Benci and D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with strong resonance at infinity, Nonlin. Anal. 7 (1983), 981–1012.

    Article  MathSciNet  Google Scholar 

  5. L. Beck and G. Mingione, Lipschitz bounds and nonuniform ellipticity, Comm. Pure Appl. Math. 73 (2020), 944–1034.

    Article  MathSciNet  Google Scholar 

  6. H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011.

    Book  Google Scholar 

  7. H. Brezis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983), 486–490.

    Article  MathSciNet  Google Scholar 

  8. M. L. M. Carvalho, J. V. A. Goncalves and E. D. da Silva, On quasilinear elliptic problems without the Ambrosetti—Rabinowitz condition, J. Math. Anal. Appl. 426 (2015), 466–483.

    Article  MathSciNet  Google Scholar 

  9. M. Colombo and G. Mingione, Bounded minimizers of double phase variational integrals, Arch. Ration. Mech. Anal. 218 (2015), 219–273.

    Article  MathSciNet  Google Scholar 

  10. E. D. da Silva, M. L. M. Carvalho, K. Silva and J. V. A. Goncalves, Quasilinear elliptic problems on non-reflexive Orlicz—Sobolev spaces, Topol. Methods Nonlinear Anal. 54 (2019), 587–612.

    MathSciNet  MATH  Google Scholar 

  11. N. Ghoussoub, Duality and Perturbation Methods in Critical Point Theory, Cambridge University Press, Cambridge, 1993.

    Book  Google Scholar 

  12. J. Giacomoni, M. Lucia and M. Ramaswamy, Some elliptic semilinear indefinite problems onN, Proc. Roy. Soc. Edinburgh Sect. A 134 (2004), 333–361.

    Article  MathSciNet  Google Scholar 

  13. D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 1998.

    MATH  Google Scholar 

  14. L. Jeanjean, On the existence of bounded Palais—Smale sequence and application to a Landesman—Lazer type problem set onN, Proc. Roy. Soc. Edinburgh Sect. A 129 (1999), 787–809.

    Article  MathSciNet  Google Scholar 

  15. L. Jeanjean and K. Tanaka, A positive solution for an asymptotically linear elliptic problem on ℝNautonomous at infinity, ESAIM Control Optim. Calc. Var. 17 (2002), 597–614.

    Article  Google Scholar 

  16. R. Landes, On Galerkin’s method in the existence theory of quasilinear elliptic equations, J. Funct. Anal. 39 (1980), 123–148.

    Article  MathSciNet  Google Scholar 

  17. V. K. Le, A global bifurcation result for quasilinear elliptic equations in Orlicz—Sobolev spaces, Topol. Methods Nonlinear Anal. 15 (2000), 301–327.

    Article  MathSciNet  Google Scholar 

  18. L. A. Maia and M. Soares, An indefinite elliptic problem on ℝNautonomous at infinity: the crossing effect of the spectrum and the nonlinearity, Calc. Var. Partial Differential Equations. 59 (2020), Article no. 41.

  19. P. Marcellini, On the definition and the lower semicontinuity of certain quasiconvex integrals, Ann. Inst. H. Poincaré, Anal. Non Linéaire 3 (1986), 391–409.

    Article  MathSciNet  Google Scholar 

  20. P. Marcellini, Regularity and existence of solutions of elliptic equations with p, q-growth conditions, J. Differential Equations 90 (1991), 1–30.

    Article  MathSciNet  Google Scholar 

  21. C. A. Stuart, Locating Cerami sequences in a mountain pass geometry, Commun. Appl. Anal. 15 (2011), 569–588.

    MathSciNet  MATH  Google Scholar 

  22. C. A. Stuart, Two positive solutions of a quasilinear elliptic Dirichlet problem, Milan J. Math. 79 (2011), 327–341.

    Article  MathSciNet  Google Scholar 

  23. C. A. Stuart and H.-S. Zhou, Existence of guided cylindrical TM-modes in a homogeneous self-focusing dielectric, Ann. Inst. H. Poincaré Anal. Non Linéaire 18 (2001), 69–96.

    Article  MathSciNet  Google Scholar 

  24. C. A. Stuart and H.-S. Zhou, A constrained minimization problem and its application to guided cylindrical TM-modes in an anisotropic self-focusing dielectric, Calc. Var. Partial Differential Equations 16 (2003), 335–373.

    Article  MathSciNet  Google Scholar 

  25. C. A. Stuart and H.-S. Zhou, Axisymmetric TE-modes in a self-focusing dielectric, SIAM J. Math. Anal. 37 (2005), 218–237.

    Article  MathSciNet  Google Scholar 

  26. C. A. Stuart and H.-S. Zhou, Existence of guided cylindrical TM-modes in an inhomogeneous self-focusing dielectric, Math. Models Methods Appl. Sci. 20 (2010), 1681–1719.

    Article  MathSciNet  Google Scholar 

  27. M. Struwe, Variational Methods, Springer, Berlin, 1996.

    Book  Google Scholar 

  28. P. Takac, L. Tello and M. Ulm, Variational problems with a p-homogeneous energy, Positivity 6 (2002), 75–94.

    Article  MathSciNet  Google Scholar 

  29. V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity, Math. USSR-Izves. 29 (1987), 33–66.

    Article  Google Scholar 

  30. V. V. Zhikov, On variational problems and nonlinear elliptic equations with nonstandard growth conditions, J. Math. Sci. (N.Y.) 173 (2011), 463–570.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was initiated during a visit of the second author to the University of Franche—Comté in March 2013. The second author thanks the University of Franche—Comté for the financial support. The authors are grateful to Professor Haim Brezis for his valuable comments on a previous version of this paper. The first author also thanks M. L. M. Carvalho and E. D. Silva for discussing with him their results in [8, 10] connected with Lemma 3.5 and D. Arcoya and J. Giacomoni for useful remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis Jeanjean.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeanjean, L., Rădulescu, V.D. Nonhomogeneous quasilinear elliptic problems: linear and sublinear cases. JAMA 146, 327–350 (2022). https://doi.org/10.1007/s11854-021-0170-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-021-0170-7

Navigation