Skip to main content
Log in

Numerical Simulation of Inclusion Collision Growth and Removal in a Tundish with Intermittent Induction Heating

  • Thermodynamic and Process Modeling Tools for Material Production Processes
  • Published:
JOM Aims and scope Submit manuscript

Abstract

To explore the effect of intermittent induction heating mode on inclusions in the tundish, a three-dimensional coupled electromagnetic field, flow field and inclusion field were developed. Numerical results show that medium frequency medium heating and medium frequency medium pause mode and head-to-tail long heating mode are beneficial to the removal of inclusions in the channel. At the same time, these two induction heating modes can not only help the macroscopic transmission and collision growth of inclusions but also help the removal of inclusions, which are two very good induction heating modes. The overall order of magnitude of the turbulent collision source term during induction heating is one order of magnitude higher than that of the turbulent collision source term without induction heating, and the difference within the channel is nearly two orders of magnitude, suggesting that the reasonable heating mode and heating time can help maximize the collision growth and removal of inclusions in the channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. W.X. Dou, B.W. Zhang, Q. Yue, and H. Xiao, Metalurgija 59, 125 (2020).

    Google Scholar 

  2. Q. Zhang, G. Xu, and K. Iwai, ISIJ Int. 62, 56 (2022).

    Article  Google Scholar 

  3. X. Qing, C. Hong, X.P. Wang, H. He, H.Y. Tang, and J.Q. Zhang, Steel Res. Int. 93, 2100839 (2022).

    Article  Google Scholar 

  4. X.Q. Chen, P. Wang, H. Xiao, B. Yi, H.Y. Tang, and J.Q. Zhang, J. Mater. Res. Technol. 24, 1410 (2023).

    Article  Google Scholar 

  5. H.Y. Tang, K.M. Wang, S.L. Xiao, J.W. Liu, and J.Q. Zhang, Metals 11, 1075 (2021).

    Article  Google Scholar 

  6. Q. Yue, C.B. Zhang, and X.H. Pei, Ironmak. Steelmak. 44, 227 https://doi.org/10.1080/03019233.2016.1209919 (2017).

    Article  Google Scholar 

  7. L.F. Zhang, S.Q. Wang, Q.P. Dong, J.W. Gao, and L.N.W. Damoah, Metall. Mater. Trans. B 45, 2153 (2014).

    Article  Google Scholar 

  8. S. Taniguchi and J.K.J.M. Brimacombe, Magnetohydrodynamics 32, 134 (1996).

    Google Scholar 

  9. K. Takahashi and S. Taniguchi, ISIJ Int. 43, 820 (2003).

    Article  Google Scholar 

  10. Y. Sahai, Metall. Mater. Trans. B 47, 2095 (2016).

    Article  Google Scholar 

  11. D. Mazumdar, Steel Res. Int. 90, 201800279 (2019).

    Article  Google Scholar 

  12. S. Joo and R.I.L. Guthrie, Metall. Trans. B 24, 755 (1993).

    Article  Google Scholar 

  13. K. Chattopadhyay, M. Isac, and R.I.L. Guithrie, ISIJ Int. 50, 331 (2010).

    Article  Google Scholar 

  14. O.J. Ilegbusi and J. Szekely, ISIJ Int. 29, 1031 (1989).

    Article  Google Scholar 

  15. Q. Wang, F.S. Qi, B.K. Li, and F. Tsukihashi, ISIJ Int. 54, 2796 (2014).

    Article  Google Scholar 

  16. F. Xing, S.G. Zheng, Z.Q. Liu, and M.Y. Zhu, Metals. https://doi.org/10.3390/met9050561 (2019).

    Article  Google Scholar 

  17. F. Xing, S.G. Zheng, and M.Y. Zhu, Steel Res. Int. https://doi.org/10.1002/srin.201700542 (2018).

    Article  Google Scholar 

  18. H.Y. Tang, L.Z. Guo, G.H. Wu, H. Xiao, H.Y. Yao, and J.Q. Zhang, Metals. https://doi.org/10.3390/met8060374 (2018).

    Article  Google Scholar 

  19. H. Lei, B. Yang, Q. Bi, Y.Y. Xiao, S.F. Chen, and C.Y. Ding, ISIJ Int. 59, 1811 (2019).

    Article  Google Scholar 

  20. W.X. Dou, Z.X. Yang, Z.M. Wang, and Q. Yue, Metals 11, 1536 https://doi.org/10.3390/met11101536 (2021).

    Article  Google Scholar 

  21. B. Yi, G.F. Zhang, Q. Jiang, P.P. Zhang, Z.H. Feng, and N. Tian, Materials. https://doi.org/10.3390/ma16155254 (2023).

    Article  Google Scholar 

  22. B. Yang, K. Liu, H. Lei, and P. Han, High Temp. Mater. Process. 41, 460 (2022).

    Article  Google Scholar 

  23. D. Mazumdar and R.I.L. Guthrie, ISIJ Int. 39, 524 (1999).

    Article  Google Scholar 

  24. H. Ling, L. Zhang, and H. Li, Metall. Mater. Trans. B 47, 2991 (2016).

    Article  Google Scholar 

  25. B. Yang, H. Lei, Q. Bi, J.M. Jiang, H.W. Zhang, Y. Zhao, and J.A. Zhou, Steel Res. Int. 89, 1800173 (2018).

    Article  Google Scholar 

Download references

Acknowledgement

Thanks to the University of Science Technology of Liaoning United Fund (HGSKL-USTLN(2022)07) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Yang or Dazhao Gou.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, B., Lei, H. & Gou, D. Numerical Simulation of Inclusion Collision Growth and Removal in a Tundish with Intermittent Induction Heating. JOM (2024). https://doi.org/10.1007/s11837-024-06589-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11837-024-06589-0

Navigation