Skip to main content

Advertisement

Log in

Application of Electromagnetic (EM) Separation Technology to Metal Refining Processes: A Review

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Application of electromagnetic (EM) force to metal processing has been considered as an emerging technology for the production of clean metals and other advanced materials. In the current paper, the principle of EM separation was introduced and several schemes of imposing EM field, such as DC electric field with a crossed steady magnetic field, AC electric field, AC magnetic field, and traveling magnetic field were reviewed. The force around a single particle or multi-particles and their trajectories in the conductive liquid under EM field were discussed. Applications of EM technique to the purification of different liquid metals such as aluminum, zinc, magnesium, silicon, copper, and steel were summarized. Effects of EM processing parameters, such as the frequency of imposed field, imposed magnetic flux density, processing time, particle size, and the EM unit size on the EM purification efficiency were discussed. Experimental and theoretical investigations have showed that the separation efficiency of inclusions from the molten aluminum using EM purification could as high as over 90 pct. Meanwhile, the EM purification was also applied to separate intermetallic compounds from metal melt, such as α-AlFeMnSi-phase from the molten aluminum. And then the potential industrial application of EM technique was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36

Similar content being viewed by others

Abbreviations

g :

Acceleration gravity vector, m s−2

l 0 :

Acting length of EM force, m

k :

Blockage ratio

F b :

Buoyancy force exerted on particle per unit volume, N m−3

I :

Coil current, A

ρ :

Density of metal melt, kg m−3

ρ p :

Density of particle, kg m−3

d p :

Diameter of particle, m

D :

Diameter of separator, m

d c/h c :

Diameter to height ratio of the cylindrical particle

d :

Distance between the two spherical particles, m

σ f :

Electrical conductivity of metal melt, s m−1

σ p :

Electrical conductivity of particle, s m−1

F em :

EM force acting on a unit volume of metal melt, N m−3

F emp :

EM force exerted on a unit volume of particle, N m−3

F p :

Expulsive force exerted on a unit volume particle, N m−3

f :

Frequency of imposed field, Hz

F r :

Froude number

G :

Gravity of a unit volume particle, N m−3

Ha:

Hartman number

h :

Height of separator, m

J :

Imposed electric current density, A m−2

B 0 :

Imposed magnetic flux density, T

c 0 :

Initial particle concentration, kg m−3

r 0 :

Initial position of particle along radial direction, m

x 0 :

Initial position of particle in x direction, m

y 0 :

Initial position of particle in y direction, m

R H :

Magnetic pressure number

Gc large :

EM migration force imposed on the large particle, N m−3

Gc small :

EM migration force imposed on the small particle, N m−3

B m :

Maximum magnetic flux density, T

µ 0 :

Magnetic permeability, H m−1

u m :

Maximum velocity of metal melt, m s−1

u 0 :

Mean velocity of metal melt, m s−1

µ :

Molecular viscosity of metal melt, Pa s

Z :

Non-dimensional axial distance

C I :

Non-dimensional parameter (including current)

D R :

Non-dimensional particle diameter

γ :

Particle–fluid density ratio

v t :

Perpendicular terminal migration velocity of the particle, m s−1

t :

Processing time, s

a :

Radius of circular pipe, m

a/δ :

Ratio of separator size to skin depth

η :

Removal efficiency

Re :

Reynolds number of fluid

b :

Size of square pipe, m

δ :

Skin depth, m

F :

Total body force, N m−3

B :

Total magnetic flux density, T

u t :

Terminal velocity of particles, m s−1

V max :

The maximum velocity inside the fluid, m s−1

u :

Velocity of metal melt, m s−1

u p :

Velocity of particle, m s−1

V p :

Volume of particle, m3

References

  1. L.V.M. Antony and R.G. Reddy: “Processes for Production of High-Purity Metal Powders”, JOM, 2003, (3), pp. 14-18.

    Article  Google Scholar 

  2. T.H. Okabe, K.T. Jacob and Y. Waseda: Purification Process and Characterization of Ultra High Purity Metals, Application of Basis Science to Metallurgical Processing, H.W. Walter Michaeli, Eicke Weber, ed. Springer,, New York, 2001, p. 411.

    Google Scholar 

  3. B.P. Cochran, M.L. Fenyes and J.L. Jeanneret: “Flux Practice in Aluminum Melting”, AFS Trans, 1992, vol. 88, pp. 737-42.

    Google Scholar 

  4. A.R. Robert: “The Closed-Circuit Degassing/Fluxing of Liquid Aluminum Alloys by Nitrogen-Chlorine “, JOM, 1997, vol. 49 (5), pp. 21-23.

    Article  Google Scholar 

  5. P. Marty, A. Alemany, R. Ricou, and C. Vives: Progr. Astronaut. Aeronaut., vol. 841983, pp. 402-13.

    Google Scholar 

  6. J. Szekely, J.W. Evans, K. Blazek and N. El-Kaddah: “Magnetohydrodynamics in Process Metallurgy”, TMS, (San Diego, California), TMS, 1992.

    Google Scholar 

  7. D. Shu, B.D. Sun, K. Li, Z. Xu and Y.H. Zhou: “Continuous Separation of Nonmetallic Inclusions from Aluminum Melt using Alternating Magnetic Field”, Materials Letters, 2002, vol. 55 (5), pp. 322-26.

    Article  Google Scholar 

  8. G. Elmer: Diamagnetic Separation, 1900.

  9. A. Kolin: “An Electromagnetokinetic Phenomenon Involving Migration of Neutral Particles”, Science, 1953, vol. 117 (2), pp. 134-37.

    Article  Google Scholar 

  10. D. Leenov and A. Kolin: “Theory of Electromagnetophoresis. I. Magnetohydrodynamic Forces Experienced by Spherical and Sy mmetrically Oriented Cylindrical Particles”, J. Chem. Phys., 1954, vol. 22 (4), pp. 683-88.

    Article  Google Scholar 

  11. N. El-Kaddah, A.D. Patel and T. T. Natarajan: “Electromagnetic Filtration of Molten Aluminum Using An Induced-current Separator”, JOM, 1995, vol. 47 (5), pp. 46-49.

    Article  Google Scholar 

  12. N. El-Kaddah: Conference Record - IAS Annual Meeting, IEEE Industry Applications Society, 1988, vol. 35(6), pp. 1162–67.

  13. P.J. Black: “The Sturcture of FeAl3”, Acta Cryst., 1955, vol. 8, p. 43.

    Article  Google Scholar 

  14. E. Yamaka and K. Sawamoto: “Electrical Conductivity and Thermo-electric Motive Force in Mgo Single Crystal”, Journal of the physical society of Japan, 1955, vol. 10 (3), pp. 176-79.

    Article  Google Scholar 

  15. M.F. Culpin: Proc. Phys. Soc., 1957, pp. 1079–87.

  16. N.A. Surplice: “The Electrical Conductivity of Calcium and Strontium Oxides”, Brit. J. Appl. Phys, 1966, vol. 17, pp. 175-80.

    Article  Google Scholar 

  17. T.J. Lewis and A.J. Wright: “The Electrical Conductivity of Magnesium Oxide at Low Temperatures”, J. Phys. D: Appl. Phys., 1968, vol. 1, pp. 441-47.

    Article  Google Scholar 

  18. O.R. Singleton and G.C.J. Robinson: “Refining Aluminum-silicon Alloys by Centrifuging”, Journal of the Institute of Metals, 1971, vol. 99, pp. 155-59.

    Google Scholar 

  19. R. Stroll: The Analysis of Eddy Currents, Clarendon press, Oxford, 1974.

    Google Scholar 

  20. U. Andres: “Magnetohydrodynamic and Magnetohydrostatic Separation-A new Prospect for Mineral Separation in the Magnetic Field “, Minerals Sci. Engng., 1975, vol. 7 (2), pp. 99-109.

    Google Scholar 

  21. L.F. Mondolfo: Aluminum Alloys: Structure and Properties, Butterworth, London, 1976.

    Google Scholar 

  22. A. Alemany, J.P. Argous, J. Barbet, M. Ivanes, R. Moreau, and S. Poinsot: French Patent No. 80400 4430. 1980.

  23. A. Miroshnikov: Magnitaya Gidrodinamika, 1980, vol. 1, pp. 70–78.

    Google Scholar 

  24. R. Moreau: Proc. 15th Congr. Theoretical Appl. Mech., Toronto, ON, Canada, 1980, pp. 107–18.

  25. P. Marty and A. Alemany: Met. Soc (Book 305)-Proc. Symp. IUTAM, Metall. Appl. Magnetohydrodynamics, Cambridge, UK, 1984, pp. 245–59.

  26. S. Taniguchi and J.K. Brimacombe: “ Theoretical Study on the Separation of Inclusion Particles by Pinch Force from Liquid Steel Flowing in A Circular Pipe”, Tetsu-to-Hagane, 1994, vol. 80 (1), pp. 24-29.

    Google Scholar 

  27. Y. Tanaka, K. Sassa, K. Iwai and S. Asai: Tetsu-to-Hagane, 1995, vol. 81(12), p. 1120–25.

    Google Scholar 

  28. T. Ogasawara, N. Yoshikawa, S. Taniguchi and T. Asai: “Electromagnetic Flow around Two Non-conducting Particles and the Interaction Forces Different Diameter Cases”, ISIJ International, 2003, vol. 43 (6), pp. 862-68.

    Article  Google Scholar 

  29. O. Takuma and Y. Noboru: “Simulation of Conducting Liquid Flow around Two Non-conducting Particles in the Presence of A DC Electromagnetic Field (oblique configuration of particles to the field)”, Modelling Simul. Mater. Sci. Eng., 2004, vol. 12, pp. 709-18.

    Article  Google Scholar 

  30. A.D. Patel: Thesis, University of Alabama, 1997.

  31. Y. Zhong, Z. Ren, K. Deng, G. Jiang and K. Xu: J. Shanghai Univ., 1999, vol. 3(2), pp. 157-61.

    Article  Google Scholar 

  32. D. Shu, T.X. Li, B.D. Sun, Y.H. Zhou, J. Wang and Z.M. Xu: “Numerical Calculation of the Electromagnetic Expulsive Force upon No nmetallic Inclusions in an Aluminum Melt. I. Spherical Particles”, Metallurgical and Materials Transactions B, 2000, vol. 31 (6), pp. 1527-33.

    Article  Google Scholar 

  33. D. Shu, T.X. Li, B.D. Sun, Y.H. Zhou, J. Wang and Z.M. Xu: “Numerical Calculation of the Electromagnetic Expulsive Force upon No nmetallic Inclusions in an Aluminum Melt. II. Cylindrical Particles”, Metall. Mater. Trans. B, 2000, vol. 31 (6), pp. 1535-40.

    Article  Google Scholar 

  34. Z. Xu, T. Li, D. Shu and Y. Zhou: “Electromagnetic Filtration of Primary Fe-rich Phases from Al-Si Alloy Melt”, Cailiao Kexue Yu Jishu, 2001, vol. 17, pp. 306-10.

    Google Scholar 

  35. Z. Xu, T. Li and Y. Zhou: “Elimination of Fe in Al-Si Cast Alloy Scrap by Electromagnetic Filtration”, Journal of Materials Science, 2003, vol. 38 (22), pp. 4557-65.

    Article  Google Scholar 

  36. T.X. Li, Z.M. Xu, B.D. Sun, D. Shu and Y.H. Zhou: “Electromagnetic Separation of Primary Iron-rich Phases from Aluminum-silicon Melt”, Transactions of the Nonferrous Metals Society of China, 2003, vol. 13 (1), pp. 121-25.

    Google Scholar 

  37. T.X. Li, Z.M. Xu, X.P. Zhang, B.D. Sun and Y.H. Zhou: “Reducing Iron Content In Al-Si alloy by Electromagnetic Seperation”, Journal of Shanghai Jiao Tong University, 2001, vol. 35 (5), pp. 664-67.

    Google Scholar 

  38. A.D. Patel and N. El-Kaddah: Light Met.: Proc. Sessions, TMS Ann. Meet., The Minerals, Metals, and Materials Society, Warrendale, PA, 1997, pp. 1013–18.

  39. S. Makarov, R. Ludwig and D. Apelian: “Inclusion Removal in Molten Aluminum: Mechanical, Electromagnetic, and Acoustic Techniques”, Trans. Am. Foundrymen’s Soc., 1999, vol. 107, pp. 727-35.

    Google Scholar 

  40. J. Barglik and C. Sajdak: “Purification of Liquid Aluminum from Non-Metallic Inclusions in the Electromagnetic Field”, Elektrowarme International, 1985, vol. 43B (2), pp. 77-80.

    Google Scholar 

  41. T. Li: PhD Thesis, Shanghai Jiao Tong University, 2004.

  42. K. Li, J. Wang, D. Shu, T.X.Sun, B.D. Sun and Y.H. Zhou: “Theoretical and Experimental Investigation of Aluminum Melt Cleaning using Alternating Electromagnetic Field”, Materials Letters, 2002, vol. 56 (3), pp. 215-20.

    Article  Google Scholar 

  43. D. Shu, B.D. Sun, J. Wang, T.X. Li and Y.H. Zhou: “Study of Electromagnetic Separation of No nmetallic Inclusions from Aluminum Melt”, Metall. Mater. Trans. A, 1999, vol. 30A (11), pp. 2979-88.

    Article  Google Scholar 

  44. M. Li and R.I.L. Guthrie: “Numerical Studies of the Motion of Particles in Current-carrying Liquid Metals Flowing in a Circular Pipe”, Metall. Mater. Trans. B, 2000, vol. 31 (2), pp. 357-64.

    Article  Google Scholar 

  45. D. Shu, B. Sun, K. Li and Y. Zhou: “Particle Trajectories in Aluminum Melt flowing in A Square Channel under an Alternating Magnetic Field Generated by A Solenoid”, Scripta Materialia, 2003, vol. 48, pp. 1385-90.

    Article  Google Scholar 

  46. D. Shu: “Effects of Secondary Flow on the Electromagnetic Separation of Inclusions from Aluminum Melt in a Square Channel by a Solenoid “, ISIJ, 2002, vol. 42 (11), pp. 1241-50.

    Article  Google Scholar 

  47. S. Makarov, R. Ludwig and D. Apelian: “Electromagnetic Separation Techniques in Metal Casting. II. Separation with Superconduting Coils”, IEEE Transactions on Magnetics, 2001, vol. 37 (2), pp. 1024-31.

    Article  Google Scholar 

  48. S. Taniguchi and J.K. Brimacombe: “Application of Pinch Force to the Separation of Inclusion Particles From Liquid Steel”, ISIJ International, 1994, vol. 34 (9), pp. 722-31.

    Article  Google Scholar 

  49. S. Makarov, R. Ludwig and D. Apelian: “Electromagnetic Separation Techniques in Metal Casting. I. Conventional Methods”, IEEE Transactions on Magnetics, 2000, vol. 36 (4), pp. 2015-21.

    Article  Google Scholar 

  50. A.P. Dong, D. Shu, J. Wang and B.D. Sun: “Identification of Fe-Al-Zn Dross Phase in Galvanised Zinc Bath and Its Separation by Method of Alternating Magnetic Field”, Iro nmaking and Steelmaking, 2008, vol. 35 (8), pp. 633-37.

    Article  Google Scholar 

  51. A.P. Dong, D. Shu, and J. Wang: Mater. Sci. Technol. Lond, 2008, vol. 24 (1), pp. 40–44.

    Article  Google Scholar 

  52. A.P. Dong, S. Da, J. Wang and B.D. Sun: “Separation Behaviour of Zinc Dross from Hot dip Galvanising Melts of Different Aluminium Concentrations by Alternating Magnetic Field”, Iro nmaking and Steelmaking, 2009, vol. 36 (4), pp. 316-20.

    Article  Google Scholar 

  53. M.R. Afshar, M.R. Aboutalebi, M. Isac and R.I.L. Guthrie: “Mathematical Modeling of Electromagnetic Separation of Inclusions from Magnesium Melt in a Rectangular Channel”, Materials Letters, 2007, vol. 61 (10), pp. 2045-49.

    Article  Google Scholar 

  54. M.R. Afshar and M.R. Aboutalebi: Int. J. Mech. Sci., 2010, vol. 52(9), 1107–14.

    Article  Google Scholar 

  55. L.N.W. Damoah and L. Zhang: 3rd International Symposium on High-Temperature Metallurgical Processing—TMS 2012 Annual Meeting and Exhibition, Orlando, FL, Minerals, Metals and Materials Society, 2012, pp. 271–78.

  56. L. Zhang, E. Øvrelid, S. Senanu, B. Agyei-Tuffour and A.N. Femi: REWAS2008: 2008 Global Symposium on Recycling, Waste Treatment and Clean Technology, CANCUN, MEXICO, TMS, Warrendale, PA, 2008, pp. 1011–26.

  57. L. Zhang and A. Ciftja: “Recycling of Solar Cell Silicon Scraps through Filtration, Part I: Experimental Investigation”, Solar Energy Materials and Solar Cells, 2008, vol. 92 (11), pp. 1450-61.

    Article  Google Scholar 

  58. Y. Tian, L. Zhang, S. Wang and L.N.W. Damoah: National Metallurgical Reaction Engineering Conference of China, 2013, pp. 878–84.

  59. M. Kadkhodabeigi, J. Safarian, H. Tveit, M. Tangstad and S.T. Johansen: “Removal of SiC Particles from Solar Grade Silicon Melts by Imposition of High Frequency Magnetic Field”, Trans. Nonferr. Met. Soc. China, 2012, vol. 22 (11), pp. 2813-21.

    Article  Google Scholar 

  60. S. Wang, L. Zang, S. Yang, Y. Chen, and Y. Li: J. Iron Steel Res. Int., 2012, vol. 19, pp. 866-78.

    Google Scholar 

  61. S. Wang, L. Zhang, and Y. Tian: Removal of Non-metallic Inclusions from Molten Steel Using a High Frequency Magnetic Field, TMS, pp. 651–58, 2014.

  62. S. Asai: “Recent Development and Prospect of Electromagnetic Processing of Materials”, Science and Technology of Advanced Materials, 2000, vol. 1, pp. 191-200.

    Article  Google Scholar 

  63. K. Takahashi and S. Taniguchi: “Electromagnetic Separation of No nmetallic Inclusion from Liquid Metal by Imposition of High Frequency Magnetic Field”, ISIJ International, 2003, vol. 43 (6), pp. 820-27.

    Article  Google Scholar 

  64. Y.S. Jennifer: Thesis, University of Toronto, 1997.

  65. J.P. Park, A. Morihira, K. Sassa and S. Asai: “Elimination of Non-metallic Inclusions Using Electromagnetic Force”, Tetsu-to-Hagane, 1994, vol. 80 (5), pp. 31-36.

    Google Scholar 

  66. E.P. Yoon, J.P. Choi, J.H. Kim, T.W. Nam and S. Kitaoka: “Continuous Elimination of Al2O3 Particles in Molten Aluminium using Electromagnetic Force”, Materials Science and Technology, 2002, vol. 18 (9), pp. 1027-35.

    Article  Google Scholar 

  67. Y. Yutaka, N. Tutomu and H. Yasuhiro: “Decreasing Non-metallic Inclusions in Molten Steel by Use of Tundish Heating System in Continuous Casting”, Tetsu-to-Hagane, 1985, vol. 71 (11), pp. 1474-81.

    Google Scholar 

  68. S. Taniguchi and J.K. Brimacombe: “Numerical Analysis on the Separation of Inclusion Particles by Pinch Force from Liquid Steel Flowing in a Rectangular Pipe”, Tetsu-to-Hagane, 1994, vol. 80 (4), pp. 312-17.

    Google Scholar 

  69. J.P. Park, K. Sassa and S. Asal: Metallurgical Processes for the Early Twenty First Century Vol. I. Basic Principles, (Warrendale PA), TMS, 1994, vol. 1, pp. 221-30.

    Google Scholar 

  70. Y. He, Q. Li and W. Liu: “Effect of Combined Magnetic Field on the Eliminating Inclusions from Liquid Aluminum Alloy”, Materials Letters, 2011, vol. 65 (8), pp. 1226-28.

    Article  Google Scholar 

  71. S. Yesilyurta, S. Motakef, R. Grugel and K. Mazuruk: “The Effect of the Traveling Magnetic Field (TMF) on the Buoyancy-induced Convection in the Vertical Bridgman Growth of Semiconductors”, Journal of Crystal Growth, 2004, vol. 263, pp. 80-89.

    Article  Google Scholar 

  72. A.D. Patel and N. El-Kaddah: Int. Sym. Electromagn. Process. Mater., ISIJ, Nogoya, 1994.

  73. V.M. Korovin: “Separation of Particles, Suspended in a Conducting Liquid with the Help pf an Alternating Electromagnetic Field”, Magnetohydrodynamics, 1985, vol. 21 (3), pp. 321-26.

    Google Scholar 

  74. V.M. Korovin: “Motion of A Drop in A Conducting Liquid under the Action of A Variable Electromagnetic Field”, Magnetohydrodynamics, 1986, vol. 22 (1), pp. 17-19.

    Google Scholar 

  75. S. Taniguchi: “Inclusion Separation from Liquid Metal by Simultaneous Imposition of AC Current and Magnetic Field”, CAMP-ISIJ, 1998, vol. 11, p. 893.

    Google Scholar 

  76. J.X. Jin, S.X. Dou and H.K. Liu: “Magnetic Separation Techniques and HTS Magnets”, Suprecond. Sci. Technol., 1998, vol. 11, pp. 1071-74.

    Article  Google Scholar 

  77. R.L.L. Guthrie and M. Li: “In Situ Detection of Inclusions in Liquid Metals. II. Metallurgical Applications of LiMCA Systems”, Metallurgical and Materials Transactions B, 2001, vol. 32 (6), pp. 1081-93.

    Article  Google Scholar 

  78. F. Yamao, K. Sassa, K. Iwai and S. Asai: “Separation of Inclusions in Liquid Metal Using Fixed Alternating Magnetic Field”, Tetsu-to-Hagane, 1997, vol. 83 (1), pp. 30-35.

    Google Scholar 

  79. L.H. Schwartz: “Sustainability: The Materials Role”, Metall. Mater. Trans. B, 1999, vol. 30B (2), pp. 157-70.

    Article  Google Scholar 

  80. M. Garnier: Proc. 3rd Int. Symp. Electromagn. Process. of Mater., ISIJ, Tokyo, 2000, p. 3.

  81. Y. Koichi and H. Kohmei: “Materials Development for A Sustainable Society”, Materials and Design, 2001, vol. 22 (2), pp. 143-46.

    Article  Google Scholar 

  82. T. Ogasawara, N. Yoshikawa and S. Taniguchi: “Flow of Conducting Liquid Around Two Nonconducting Particles in DC Electromagnetic Field and the Electromagnetic Migration Force”, Metall. & Mater. Trans., 2004, vol. 35B (5), pp. 847-55.

    Article  Google Scholar 

  83. M. Li and R.I.L. Guthrie: “Numerical Studies of the Motion of Spheroidal Particles Flowing with Liquid Metals Through an Electric Sensing Zone”, Metall. Mater. Trans. B, 2000, vol. 31 (4), pp. 855-66.

    Article  Google Scholar 

  84. S. Taniguchi and A. Kikuchi: Proc. 3rd Int. Symp. EPM, EPM2000, ISIJ, Tokyo, 2000, p. 315.

  85. M. Li and R.I.L. Guthrie: “On the Detection and Selective Separation of Inclusions in Liquid Metal Cleanliness Analyzer (LiMCA) Systems”, Metallurgical and Materials Transactions B, 2000, vol. 31B (4), pp. 767-77.

    Article  Google Scholar 

  86. M. Li and R.I.L. Guthrie: “Liquid Metal Cleanliness Analyzer (LiMCA) in Molten Aluminum”, ISIJ International, 2001, vol. 41 (2), pp. 101-10.

    Article  Google Scholar 

  87. Z. Sun, M. Guo, J. Vleugels and O.V.D. Biest: “Numerical Calculation on Inclusion Removal from Liquid Metals under Strong Magnetic Fields”, Progress In Electromagnetics Research, 2009, vol. 98, pp. 359-73.

    Article  Google Scholar 

  88. Y. Kubota, N. Yoshikawa and S. Taniguchi: “Electromagnetic Migration Force Acting on Two Non-conducting Particles in DC Electromagnetic Force Field”, Tetsu to Hagane, 2001, vol. 87 (3), pp. 113-20.

    Google Scholar 

  89. T. Ogasawara, N. Yoshikawa, S. Taniguchi and T. Asai: “Flow of Conducting Liquid around Two Nonconducting Particles in DC Electromagnetic Field and the Electromagnetic Migration Force”, Metallurgical and Materials Transactions B, 2004, vol. 35 (5), pp. 847-55.

    Article  Google Scholar 

  90. B. Zhang, Z. Ren and J. Wu: “Continuous Electromagnetic Separation of Inclusion from Aluminum Melt using Alternating Current”, T Nonferr Met. SOC. China, 2006, vol. 16, pp. 33-38.

    Article  Google Scholar 

  91. K. Li, D. Shu, J. Wang, Z. Du, B. Sun and Y. Zhou: “Theoretical Study on Separation of No nmetallic Inclusion Particles from a Hollow Cylindrical Melt in Alternating Electromagnetic Field”, ISIJ International, 2004, vol. 44 (4), pp. 647-52.

    Article  Google Scholar 

  92. K. Takahashi and S. Taniguchi: Proc. Electromagn. Process. Mater. Int. Conf. 2003, 2003.

  93. Q. Guo, Z. Cao and Z. Zhang: “Separation Efficiency of Alumina Particles in Al Melt under High Frequency Magnetic Field”, Trans. Nonferrous Met. Soc. China, 2010, vol. 20, pp. 153-57.

    Article  Google Scholar 

  94. B. Zhang, Z. Ren and J. Wu: “Continuous Electromagnetic Separation of Inclusion from Aluminum Melt using Alternating Current.”, Trans. Nonferr. Met. Soc. China, 2006, vol. 16, pp. 33-38.

    Article  Google Scholar 

  95. T. Yosikawa and K. Morita: “Refining of Si by the Solidification of Si-Al Melt with Electromagnetic Force”, ISIJ Internetional, 2005, vol. 45 (7), pp. 967-71.

    Article  Google Scholar 

  96. L. Zhang: Chinese Patent, No. 201220416982.9, 2012.

  97. L. Zhang: Chinese Patent, No. 201220417818.X, 2012.

  98. K. LI, J. Wang, D. Shu, Z. Du, B. Sun and Y. Zhou: “In-situ Al/Mg2Si Functional Graded Materials (FGMs) Prepared by Electrom a gnetic Separation”, Journal of Shanghai Jiaotong University, 2004, vol. 38 (9), pp. 1433-37.

    Google Scholar 

  99. C. Song, Z. Xu and G. Jian: “In-situ Al/Al3Ni Functionally Graded Materials by Electromagnetic Separation Method”, Materials and Engineering A, 2007, vol. 445, pp. 148-54.

    Article  Google Scholar 

  100. C. Song, Z. Xu, G. Liang and J. Li: “Study of in situ Al/Mg2Si Functionally Graded materials by Eelectromagnetic Sseparation Method”, Materials Science and Engineering A, 2006, vol. 424, pp. 6-16.

    Article  Google Scholar 

  101. C. Song, Z. Xu, and J. Li: Mater. Des., 2007, vol. 28, pp. 1012–15.

    Article  Google Scholar 

  102. P.N. Crepeau: AFS Trans, 1995, vol. 103, p. 361.

    Google Scholar 

  103. J.H. Kim and E.P. Yoon: “Elimination of Fe Element in A380 Aluminum Alloy Scrap by Electromagnetic Force”, Journal of Materials Science Letters, 2000, vol. 19 (3), pp. 253-55.

    Article  Google Scholar 

  104. G.C. Yao, Z.Q. Sun and Z.X. Qiu: “Electromagnetic Separation of Iron-rich Phases from Molten Aluminium”, Journal of Northeastern University, Natural Science, 2001, vol. 22 (2), pp. 127-29.

    Google Scholar 

  105. L. Zhang, W.-L. Jiao, H. Wei and G.-C. Yao: “Effects of the Shape of Fe Enrichment Phase on Purification of Liquid Al in Electromagnetic Field”, Special Casting & Nonferrous Alloys (Chinese), 2005, vol. 25 (3), pp. 131-32.

    Google Scholar 

  106. W. Jiao and L. Zhang: “Purification of Iron Rich Impurity from Aluminum-Silicon Alloy by Electromagnetic Seperation”, Foundry Technology (Chinese), 2006, vol. 27 (3), pp. 269-72.

    Google Scholar 

  107. L. Zhang, W. Jiao, H. Wei and G. Yao: “Electromagnetic Seperation of Magnetic Purity Particles in Aluminum Melt”, Materials Science & Technology (China), 2006, vol. 14 (5), pp. 524-26.

    Google Scholar 

  108. L.N.W. Damoah and L. Zhang: “High Frequency Electromagnetic Separation of Inclusions from Aluminum”, Light Metals 2012, 2012, pp. 1069-76.

    Google Scholar 

  109. P. Li, S. Zuo and T. Li: “Electromagnetic Separation of Oxide Inclusions from Copper Alloy”, Special Casting and Nonferrous Alloys, 2010, vol. 32 (2), pp. 176-79.

    Google Scholar 

  110. D. Shu, B. Sun, K. Li, J. Wang and Y. Zhou: “Effects of Secondary Flow on the Electromagnetic Separation of Inclusions from Aluminum Melt in a Square Channel by a Solenoid”, ISIJ International, 2002, vol. 42 (11), pp. 1241-50.

    Article  Google Scholar 

  111. A. Dong: Theoretical and Experimental Study on Electromagnetic Separation of Zinc Dross from Galvanizing Zinc Melt, Ph.D Thesis, Shanghai Jiao Tong University, 2009.

  112. K. Cukierski and B.G. Thomas: “Flow Control with Local Electromagnetic Braking in Continuous Casting of Steel Slabs”, Metallurgical and Materials Transactions B, 2008, vol. 39B (1), pp. 94-107.

    Article  Google Scholar 

  113. J.K. Srivastava, M. Prasad and J.B. Wagner: “Electrical Conductivity of Silicon Dioxide Thermally Grown on Silicon”, J. Electrochem. Soc.: Solid-state Science and Technology, 1985, vol. 132 (4), pp. 955-63.

    Article  Google Scholar 

  114. A.T. Dinsdale and P.E. Quested: Proc. 2003 Int. Symp. Liquid Met., 2004, vol. 39, pp. 7221–28.

  115. J.M. Molina, R. Prieto, J. Narciso and E. Louis: “The Effect of Porosity on the Thermal Conductivity of Al–12 wt% Si/SiC Composites”, Scripta Materialia, 2009, vol. 60, pp. 582-85.

    Article  Google Scholar 

  116. L.A. Shipilova and A.A. Kas’yanenko: “Electrophysical Properties of A Porous Silicon Carbide Ceramic “, Powder Metallurgy and Metal Ceramics, 1993, vol. 32 (4), pp. 361-65.

    Article  Google Scholar 

  117. V. Savolainen, J. Heikonen and J. Ruokolainen: “Simulation of Large-scale Silicon Melt Flow in Magnetic Czochralski Growth”, Journal of Crystal Growth, 2003, vol. 243, pp. 243-60.

    Article  Google Scholar 

  118. H. Sasaki, E. Tokizaki and X. Huang: “Temperature Dependence of the Viscosity of Molten Silicon Measured by the Oscillating Cup Method”, Jpn. J. Appl. Phys., 1995, vol. 34, pp. 3432-36.

    Article  Google Scholar 

  119. X. Cao and J. Campbell: “The Solidification Characteristics of Fe-rich Intermetallics in Al-11.5Si-0.4Mg Cast Alloys”, Metall. Mater. Trans. a-Physical Metallurgy and Materials Science, 2004, vol. 35A (5), pp. 1425-35.

    Article  Google Scholar 

  120. X. Cao, N. Saunders and J. Campbell: “Effect of Iron and Manganese Contents on Convection-free Precipitation and Sedimentation of Primary Alpha-Al(FeMn)Si Phase in Liquid Al-11.5Si-0.4Mg Alloy”, J. Mater. Sci., 2004, vol. 39 (7), pp. 2303-14.

    Article  Google Scholar 

  121. A. Flores, M. Sukiennik, A.H. Castillejos, F.A. Acosta and J.C. Escobedo: “A Kinetic Study on the Nucleation and Growth of the Al8FeMnSi2 Intermetallic Compound for Aluminum Scrap Purification”, Intermetallics, 1998, vol. 6 (3), pp. 217-27.

    Article  Google Scholar 

  122. A. Flores, J. Escobedo, J. Mendez and M. Mendez: Light Met., 1992, pp. 845–50.

    Google Scholar 

  123. G.H. Nijhof, H.M. van der Donk, C.A.M. Castelijns, S. Bouvet and Y. Bertaud: Light Met., 1996, pp. 1065–69.

    Google Scholar 

  124. H.M. Van der Donk: Method for Refining an Aluminum Scrap Smelt, 1998.

  125. H.L. de Moraes, J.R. de Oliveira, D.C.R. Espinosa and J.A.S. Tenorio: “Removal of Iiron from Molten Recycled Aluminum through Intermediate Phase Filtration”, Materials Transactions, 2006, vol. 47 (7), pp. 1731-36.

    Article  Google Scholar 

  126. H. Matsubara, N. Izawa and M. Nakanishi: “Macroscopic Segregation in Al-11 Mass% Si Alloy Containing 2 Mass% Fe Solidified under Centrifugal Force”, Journal of Japan Institute of Light Metals, 1998, vol. 48 (2), pp. 93-97.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the authors of the literatures cited in the current paper and publishers for their permission to reproduce figures from their publications and are grateful for the support from the National Science Foundation China (Grant Nos. 51274034, 51334002, U1360201, and 51204110), Beijing Key Laboratory of Green Recycling and Extraction of Metals (GREM), the Laboratory of Green Process Metallurgy and Modeling (GPM2) and the High Quality steel Consortium (HQSC) at the School of Metallurgical and Ecological Engineering at University of Science and Technology Beijing (USTB), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifeng Zhang.

Additional information

Manuscript submitted July 29, 2010.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Wang, S., Dong, A. et al. Application of Electromagnetic (EM) Separation Technology to Metal Refining Processes: A Review. Metall Mater Trans B 45, 2153–2185 (2014). https://doi.org/10.1007/s11663-014-0123-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-014-0123-y

Keywords

Navigation