Skip to main content
Log in

Numerical Simulation of Collision-Coalescence and Removal of Inclusions in a Tundish

  • Multiphase Flows in Materials Processing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Knowledge on the behavior of inclusions in molten steel is crucial to study the fluid flow in the tundish. In this study, an inclusion mass/population conservation model and fluid mass/momentum/energy conservation model were coupled to investigate the spatial distribution of the inclusion volume concentration and inclusion size in the tundish. In this model, collision-coalescence among inclusions occurs due to turbulent collisions and Stokes collisions. The numerical results predict an inclusion size distribution that agrees with experimental data. The inclusion volume concentration decreases while the inclusion characteristic radius increases along the flow path of the molten steel. Furthermore, it is easy for inclusions to collide and aggregate with each other at the guide hole of the baffle, because there is strong turbulent flow there. Also, the inclusion characteristic radius in the distributing chamber is greater than that in the receiving chamber, while the inclusion volume concentration in the distributing chamber is less than that in the receiving chamber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

N :

Inclusion number density (1/m3)

C :

Inclusion volume concentration (–)

A :

Constant (–)

B :

Constant (–)

r * :

Inclusion characteristic radius (m)

μ :

Dynamic viscosity (kg/m s)

\( \upsilon \) :

Kinematic viscosity (m2/s)

\( A^{*} \) :

Hamaker constant (–)

\( \vec{u}_{{\rm f}} \) :

Velocity of molten steel (m/s)

\( F_{{\rm C}}^{{\rm c}} \) :

Transport flux of inclusion volume concentration (m/s)

\( F_{{\rm N}}^{{\rm c}} \) :

Transport flux of inclusion number density [1/(m2 s)]

\( F_{{\rm C}}^{{\rm d}} \) :

Diffusion flux of inclusion volume concentration (m/s)

\( F_{{\rm N}}^{{\rm d}} \) :

Diffusion flux of inclusion number density [1/(m2 s)]

\( \beta \) :

Collision rate (m3/s)

\( \kappa \) :

Boltzmann’s constant (–)

\( N_{{\rm T}} \) :

Dimensionless ratio of viscous and van der Waals forces (–)

\( {\text{Sc}} \) :

Schmidt number (–)

\( f \) :

Fractional inclusion number density (1/m4)

\( g \) :

Gravitational acceleration (m/s2)

\( \vec{u}_{{\rm p}} \) :

Inclusion velocity (m/s)

\( \vec{u}_{{\rm C}} ,\vec{u}_{{\rm N}} \) :

Inclusion slipping velocity (m/s)

t :

Time (s)

\( \tau_{0} \) :

Wall friction [kg/(s2 m)]

\( D_{{\rm eff}} \) :

Effective diffusivity of molten steel (m2/s)

References

  1. S. Lopez-Ramirez, J. Palafox-Ramos, R.D. Morales, J.D.J. Barreto, and D. Zacharias, Metall. Mater. Trans. B 32, 615 (2001).

    Article  Google Scholar 

  2. R.D. Morales, J. Palafox-Ramos, J.D.J. Barreto, S. Lopez-Ramirez, and D. Zacharias, Metall. Mater. Trans. B 31, 1505 (2000).

    Article  Google Scholar 

  3. R.D. Morales, M. Diaz-Cruz, J. Palafox-Ramos, S. Lopez-Ramirez, and J.de J. Barreto-Sandoval, Steel Res. 72, 11 (2001).

    Article  Google Scholar 

  4. S.G. Zheng and M.Y. Zhu, Ironmak. Steelmak. 33, 398 (2006).

    Article  Google Scholar 

  5. D.F. Chen, X. Xie, M.J. Long, M. Zhang, L.L. Zhang, and Q. Liao, Metall. Mater. Trans. B 45, 392 (2014).

    Article  Google Scholar 

  6. P.K. Jha, P.S. Rao, and A. Dewan, ISIJ Int. 48, 154 (2008).

    Article  Google Scholar 

  7. S. Chang, L.C. Zhong, and Z.S. Zou, ISIJ Int. 55, 837 (2015).

    Article  Google Scholar 

  8. Y. Miki, H. Kitaoka, N. Bessho, T. Sakuraya, S. Ogura, and M. Kuga, Tetsu-to-Hagane 82, 498 (1996).

    Article  Google Scholar 

  9. S. Taniguchi and J.K. Brimacombe, ISIJ Int. 34, 722 (1994).

    Article  Google Scholar 

  10. Y. Miki and B.G. Thomas, Metall. Mater. Trans. B 60B, 639 (1999).

    Article  Google Scholar 

  11. K. Raghavendra, S. Sarkar, S.K. Ajmani, M.B. Denys, and M.K. Singh, Appl. Math. Model. 37, 6284 (2013).

    Article  Google Scholar 

  12. L. Zhang, S. Taniguchi, and K. Cai, Metall. Mater. Trans. B 31B, 253 (2000).

    Article  Google Scholar 

  13. L. Zhang, J. Aoki, and B.G. Thomas, Metall. Mater. Trans. B 37B, 361 (2006).

    Article  Google Scholar 

  14. H. Ling, L. Zhang, and H. Li, Metall. Mater. Trans. B 47, 2991 (2016).

    Article  Google Scholar 

  15. L.T. Wang, S.H. Peng, Q.Y. Zhang, and Z.B. Li, Steel Res. 77, 25 (2006).

    Article  Google Scholar 

  16. T. Nakaoka, S. Taniguchi, K. Matsumoto, and S.T. Johansen, ISIJ Int. 41, 1103 (2001).

    Article  Google Scholar 

  17. H. Lei, K. Nakajima, and J.C. He, ISIJ Int. 50, 1735 (2010).

    Article  Google Scholar 

  18. M.Y. Zhu, S.G. Zheng, Z.Z. Huang, and W.P. Gu, Steel Res. 76, 718 (2013).

    Article  Google Scholar 

  19. H. Lei, D.Q. Geng, and J.C. He, ISIJ Int. 49, 1575 (2009).

    Article  Google Scholar 

  20. L. Zhao and K. Liu, J. Iron. Steel Res. 14, 19 (2002).

    Google Scholar 

  21. H. Lei, Y. Zhao, and D. Geng, ISIJ Int. 54, 1629 (2014).

    Article  Google Scholar 

  22. H. Lei, J.M. Jiang, B. Yang, Y. Zhao, H.W. Zhang, W.X. Wang, and G.W. Dong, Metall. Mater. Trans. B 49, 666 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

The research is supported by the National Natural Science Foundation of China and Shanghai Baosteel (No. U1460108) and the Fundamental Research Funds for the Central Universities (No. N170906004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Lei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, B., Lei, H., Bi, Q. et al. Numerical Simulation of Collision-Coalescence and Removal of Inclusions in a Tundish. JOM 70, 2950–2957 (2018). https://doi.org/10.1007/s11837-018-3061-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-3061-3

Navigation