Skip to main content
Log in

Effect of Thixoforming Process and Microstructural Changes in the A380 Matrix Composite Reinforced with NbC by the Stir Casting Method

  • Liquid Metal Processing of Al- and Mg-based Composite Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Semisolid metal processing is a promising technique for obtaining complex low-porosity shapes. However, a number of researchers also use thixoforming for composites. This paper evaluates the thixoforming process in an aluminum matrix composite made by the stir casting process. The A380 aluminum alloy was reinforced with 4 different concentrations of NbC (0 wt.%, 5 wt.%, 10 wt.%, and 15 wt.%) by means of the stir casting method at 750°C. To obtain a non-dendritic feedstock, Al-5Ti-1B was added to the molten metal to achieve chemical grain refinement. Isothermal holding for 90 s was applied at the mushy stage of 60% solid fraction at 562°C, determined by differential scanning calorimetry analysis. Optical micrographs, scanning electron microscopy, and x-ray diffraction were used to characterize the material. After performing the thixoforming, an increase in hardness was observed under all conditions. The results show a globular-based morphology with fragmentation of the β-Fe intermetallic phase. The distribution of the NbC particles was improved after the thixoforming process. Thus, the stir casting technique, in conjunction with thixoforming processing of the composite material, A380 + NbC, is an efficient technological route for the manufacture of parts with good characteristics and properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The raw data and data required to reproduce these findings are available for download from Ref. 48.

References

  1. S. Arunkumar, M. Subramani Sundaram, K.M. Suketh Kanna, and S. Vigneshwara, Mater. Today Proc. 33, 484 (2020).

    Article  Google Scholar 

  2. M.T. Sijo and K.R. Jayadevan, Procedia Technol. 24, 379 (2016).

    Article  Google Scholar 

  3. S. Kumar, R. Kumar, K.K. Goyal, and N. Sharma, Mater. Today Proc. 63, 400 (2022).

    Article  Google Scholar 

  4. U.R. Kanth, P.S. Rao, and M.G. Krishna, J. Mater. Res. Technol. 8, 737 (2019).

    Article  Google Scholar 

  5. A.K. Singh, S. Soni, and R.S. Rana, Adv. Eng. Mater. 22, 2000322 (2020).

    Article  Google Scholar 

  6. T.S. Kumar, G. Suganya Priyadharshini, S. Shalini, K. Krishna Kumar, and R. Subramanian, Trans. Indian Inst. Met. 72, 1593 (2019).

    Article  Google Scholar 

  7. W.D. Callister and D.G. Rethwisch, Materials Science and Engineering: An Introduction, 10th edn. (Wiley: WileyPLUS Products, Hoboken, 2018).

    Google Scholar 

  8. L.M.P. Ferreira, M.H. Robert, E. Bayraktar, and D. Zaimova, Adv. Mater. Res. 939, 68 (2014).

    Article  Google Scholar 

  9. X.J. Wang, X.S. Hu, Y.Q. Wang, K.B. Nie, K. Wu, and M.Y. Zheng, Mater. Sci. Eng. A 559, 139 (2013).

    Article  Google Scholar 

  10. H.Y. Atay, D. Aišman, H. Jirková, M. Behulova, and B. Mašek, Met. Mater. Int. 26, 1420 (2020).

    Article  Google Scholar 

  11. M.S. Salleh, M.Z. Omar, J. Syarif, and M.N. Mohammed, ISRN Mater. Sci. 2013, 679820 (2013).

    Article  Google Scholar 

  12. M.K. Surappa, J. Mater. Process. Technol. 63, 325 (1997).

    Article  Google Scholar 

  13. S.D. Kumar, J. Ghose, A. Mandal, S. Deepak Kumar, J. Ghose, and A. Mandal, in Sustainable Engineering Products and Manufacturing Technologies (Academic Press, London, 2019), pp 25–43.

    Book  Google Scholar 

  14. X.H.X.-H. Chen, G. Liu, P. Chen, L. Liu, S. Rao, and Y. Hu, Int. J. Cast Met. Res. 34, 21 (2021).

    Article  Google Scholar 

  15. L. Wang, T. Chen, and P. Pu, Mater. Sci. Eng. A 830, 142307 (2022).

    Article  Google Scholar 

  16. H.M. Enginsoy, F. Gatamorta, E. Bayraktar, M.H. Robert, and I. Miskioglu, Compos. Part B Eng. 162, 397 (2019).

    Article  Google Scholar 

  17. A. Zulfia, A. Fahmi, and A.H.A.H. Wicaksono, Mater. Today Proc. 17, 1658 (2019).

    Article  Google Scholar 

  18. B.E. Arendarchuck, Avaliação Da Tixoconformação e Desgaste Abrasivo Do Compósito A380/NbC Obtido Pelo Método Stir Casting, 144 f. Master's Thesis (Mechanical Engineering Master Degree) (Federal University of Technology – Paraná, Graduate Program in Mechanical Engineering, Ponta Grossa, PR, 2022).

  19. J. Singh, N. Alba-Baena, R. Trehan, and V.S. Sharma, J. Mater. Eng. Perform. 31, 4887 (2022).

    Article  Google Scholar 

  20. A. Shikika, M. Sethurajan, F. Muvundja, M.C. Mugumaoderha, and S. Gaydardzhiev, Hydrometallurgy 198, 105496 (2020).

    Article  Google Scholar 

  21. B.C. Pai, G. Ramani, R.M. Pillai, and K.G. Satyanarayana, J. Mater. Sci. 30, 1903 (1995).

    Article  Google Scholar 

  22. J. Qi Gan, Y. Jian Huang, C. Wen, and J. Du, Trans. Nonferrous Met. Soc. China 30, 2879 (2020).

    Article  Google Scholar 

  23. J.H. Flynn, Thermochim. Acta 217, 129 (1993).

    Article  Google Scholar 

  24. ASTM International. Standard Test Methods for Determining Average Grain Size, ASTM E112-13 (West Conshohocken, PA, 2013).

  25. A.V. Rodrigues Dantas, G.L. Brollo, D.V. Tamayo, and E.J. Zoqui, Mater. Res. 24, 20200313 (2021).

    Article  Google Scholar 

  26. A. Gregolin, C.A. Facchini, and E.J. Zoqui, Mater. Res. 23, 20200133 (2020).

    Article  Google Scholar 

  27. A.K. Tuli, P. Singh, S. Das, D.P. Mondal, J.P. Shakya, A. Kumar Tuli, P. Singh, S. Das, D.P. Mondal, and J.P. Shakya, Sadhana Acad. Proc. Eng. Sci. 46, 1 (2021).

    Google Scholar 

  28. C. Lin, H. Chen, L. Zeng, S. Wu, and X. Fang, Metals 11, 587 (2021).

    Article  Google Scholar 

  29. N. Zhao, Y. Xu, and Y. Fu, Surf. Coat. Technol. 309, 1105 (2017).

    Article  Google Scholar 

  30. A.E. Karantzalis, A. Lekatou, E. Georgatis, and H. Mavros, J. Mater. Sci. 45, 2165 (2010).

    Article  Google Scholar 

  31. R. Raj and D.G. Thakur, Mater. Sci. Eng. Technol. 49, 1068 (2018).

    Google Scholar 

  32. M.O. Shabani and A. Mazahery, Appl. Math. Model. 36, 5455 (2012).

    Article  Google Scholar 

  33. J. Zhu, W. Jiang, G. Li, F. Guan, Y. Yu, and Z. Fan, J. Mater. Process. Technol. 283, 116699 (2020).

    Article  Google Scholar 

  34. E.J. Zoqui and L.V. Torres, Mater. Res. 13, 305 (2010).

    Article  Google Scholar 

  35. A.A. Abdelsalam, T.S. Mahmoud, A.A. El-Betar, and A.M. El-Assal, Int. J. Curr. Eng. Technol. 5, 3560 (2015).

    Google Scholar 

  36. L.V. Torres, Rev. Eng. e Tecnol. 13, 94 (2021).

    Google Scholar 

  37. H.V. Atkinson, Prog. Mater. Sci. 50, 341 (2005).

    Article  Google Scholar 

  38. S. Gencalp Irizalp and N. Saklakoglu, Eng. Sci. Technol. Int. J. 17, 58 (2014).

    Google Scholar 

  39. M.S. Salleh, M.Z. Omar, K.S. Alhawari, M.N. Mohammed, M.A.M. Ali, and E. Mohamad, Trans Nonferrous Met. Soc. China (Engl. Ed.) 26, 2029 (2016).

    Article  Google Scholar 

  40. Y. Birol and F. Birol, Int. J. Mater. Form. 1, 981 (2008).

    Article  Google Scholar 

  41. M. Sambathkumar, P. Navaneethakrishnan, K. Ponappa, and K.S.K. Sasikumar, Lat. Am. J. Solids Struct. 14, 243 (2017).

    Article  Google Scholar 

  42. N.F.R. Ali, M.S. Salleh, S.S. Al-Zubaidi, and S.H. Yahaya, J. Adv. Manuf. Technol. 15, 27 (2021).

    Google Scholar 

  43. A. Pola, R. Roberti, M. Modigell, and L. Pape, Solid State Phenom. 141–143, 301 (2008).

    Article  Google Scholar 

  44. Z. Wang, K.G. Prashanth, S. Scudino, A.K. Chaubey, D.J. Sordelet, W.W. Zhang, Y.Y. Li, and J. Eckert, J. Alloys Compd. 586, S419 (2014).

    Article  Google Scholar 

  45. X.Z.Z. Zhang, T.J.J. Chen, and Y.H.H. Qin, Mater. Des. 99, 182 (2016).

    Article  Google Scholar 

  46. K. Sekar and P. Vasanthakumar, Mater. Sci. Forum 979, 47 (2020).

    Article  Google Scholar 

  47. H.I. Akbar, E. Surojo, D. Ariawan, G.A. Putra, and R.T. Wibowo, Procedia Struct. Integr. 27, 62 (2020).

    Article  Google Scholar 

  48. B. E. Arendarchuck, Mendeley Data. Database 2. https://doi.org/10.17632/zbk5rpmc3g.2 (2022). Accessed 25 Sep 2022.

Download references

Acknowledgements

The authors would like to thank the Graduate Program (DIRPPG) from the Technological Federal University of Paraná (UTFPR). The National Council for Scientific and Technological Development (CNPq)/Araucaria Foundation for aid in promotion and The Centro de Caracterização Multiusuário em Pesquisa e Desenvolvimento de Materiais (C2MMa) for the analyses conducted. Special thanks to CBMM for supplying the NbC powder, José Roberto de Campos for building the stir casting system and State University of Campinas (UNICAMP) for DSC analysis. Likewise, the contribution of the Coordination for the Improvement of Higher Education Personnel—Brazil (CAPES)—Financing Code 001, which provided financial support for this study.

Funding

This study was funded by Coordination for the Improvement of Higher Education Personnel—Brazil (CAPES)—Financing Code 001.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Conceptualization: BEA, HDCF, LAL; Writing—original draft preparation: BEA; Writing—review and editing; HDCF, LAL; Supervision: HDCF, LAL; Methodology: BEA, HDCF, LAL. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Bruno Edu Arendarchuck.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arendarchuck, B.E., Fals, H.D.C. & Lourençato, L.A. Effect of Thixoforming Process and Microstructural Changes in the A380 Matrix Composite Reinforced with NbC by the Stir Casting Method. JOM 75, 184–194 (2023). https://doi.org/10.1007/s11837-022-05573-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05573-w

Navigation