Skip to main content

Advertisement

Log in

Influence of Cr3C2 Addition on Microstructure and Mechanical Properties of AA2618 Composites by Powder Metallurgy

  • Original Research Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

In the present work, Al-2.5Cu-1.5 Mg-1Ni (AA2618) aluminium alloy with the incorporation of Cr3C2 reinforcement at 2, 3, 4 and 5 wt.% was systematically investigated. The composite powders were initially ball-milled and cold-compacted at 400 and 450 MPa. The pressure-less sintering was done at 550 and 600 °C for a holding time of 60 and 90 min under vacuum atmosphere. The experiments are implemented in accordance with Taguchi L8 OA with four process factors and four response characteristics. The results indicate that significant microstructural refinement with the precipitation of new Al-Cr-C compound was noticed up to 4 wt.% of Cr3C2 reinforcement, leading to tensile strength improvement at 28 and 200 °C. However, the strength was decreased at 5 wt.% Cr3C2 reinforcement, which could be attributed to the presence of coarse grain structure and agglomerated large GB precipitate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M.K. Sahu, R.K. Sahu, Investigation of mechanical properties and optimization of forming parameters of Al7075-B4C-fly ash hybrid aluminium matrix composite. Arab. J. Sci. Eng. 47, 8161–8176 (2022). https://doi.org/10.1007/s13369-021-06117-1

    Article  CAS  Google Scholar 

  2. G. Arumugam et al., Effect of two-step ball milling on microstructure and mechanical properties of Al4032/bimodal-B4C composites. J. Inst. Eng. India Ser. D. (2023). https://doi.org/10.1007/s40033-023-00479-6

    Article  Google Scholar 

  3. R. Arunachalam, K. Pradeep et al., A review on the production of metal matrix composites through stir casting–furnace design, properties, challenges, and research opportunities. J. Manuf. Process. 42, 213–245 (2019). https://doi.org/10.1016/j.jmapro.2019.04.017

    Article  Google Scholar 

  4. P. Bharathi, T.S. Kumar, Mechanical characteristics and wear behaviour of Al/SiC and Al/SiC/B4C hybrid metal matrix composites fabricated through powder metallurgy route. SILICON. (2023). https://doi.org/10.1007/s12633-023-02347-0

    Article  Google Scholar 

  5. A. Mary, A.O. Awotunde et al., Influence of sintering methods on the mechanical properties of aluminium nano-composites reinforced with carbonaceous compounds: a review. J. Mater. Res. Technol. 8, 2432–2449 (2019). https://doi.org/10.1016/j.jmrt.2019.01.026

    Article  CAS  Google Scholar 

  6. M.R. Akbarpour, S. Alipour, Microstructure and tribological properties of nanostructured aluminum reinforced with SiC nanoparticles fabricated by powder metallurgy route. Trans. Indian Inst. Met. 71, 745–752 (2018)

    Article  CAS  Google Scholar 

  7. M. Benaïssa, M. Catherine, C. Michel, Fatigue behavior of 2618–T851 aluminum alloy under uniaxial and multiaxial loadings. Int. J. Fatigue. (2020). https://doi.org/10.1016/j.ijfatigue.2019.105322

    Article  Google Scholar 

  8. N. Jauković, V. Asanović, Ž Radović, Mechanical properties and recovery of AA 2618 aluminum alloy. High Temp. Mater. Process. 30, 599–602 (2011). https://doi.org/10.1515/htmp.2011.073

    Article  Google Scholar 

  9. G. Arumugam, S. Saravanan et al., Effect of process parameters on microstructure and mechanical properties of Al-11.5%Si-1%Mg/bimodal SiC(m–n) composites. SILICON. 15, 725–737 (2023). https://doi.org/10.1007/s12633-022-02036-4

    Article  CAS  Google Scholar 

  10. Y. Balram et al., Wear and corrosion behaviour of multiple pass friction stir processing on aluminium alloy 6061 embedding with B4C particles. Adv. Mater. Process. Technol. (2023). https://doi.org/10.1080/2374068X.2023.2171667

    Article  Google Scholar 

  11. X. Yang, H. Weng, C. Tang, Interfacial bonding mechanism of aluminium and steel composites. Adv. Compos. Lett. 27(2), 255 (2018). https://doi.org/10.1177/096369351802700203

    Article  Google Scholar 

  12. Z. Weiwei, M. Pavlina, F. Yuchi, K. Keiko, N. Naoyuki, K. Akira, Interfacial reaction induced efficient load transfer in few-layer graphene reinforced Al matrix composites for high-performance conductor. Compos. Part B Eng. 167, 93–99 (2019). https://doi.org/10.1016/j.compositesb.2018.12.018

    Article  CAS  Google Scholar 

  13. A. Lekatou, A.E. Karantzalis et al., Aluminium reinforced by WC and TiC nanoparticles (ex-situ) and aluminide particles (in-situ): microstructure, wear and corrosion behaviour. Mater. Design. 65, 1121–1135 (2015). https://doi.org/10.1016/j.matdes.2014.08.040

    Article  CAS  Google Scholar 

  14. K. Ravi, Desirability-based multi-objective optimization and analysis of WEDM characteristics of aluminium (6082)/tungsten carbide composites. Arab. J. Sci. Eng. 44, 893–909 (2019). https://doi.org/10.1007/s13369-018-3353-5

    Article  CAS  Google Scholar 

  15. B. Bir, N. Hemant, Frictional and wear behavior of Cr3C2-NiCr coating on AISI-304 stainless steel. Adv. Mater. Process. Technol. 8, 4007–4017 (2022). https://doi.org/10.1080/2374068X.2022.2036508

    Article  Google Scholar 

  16. S. Wang, S. Zhang, C.H. Zhang, C.L. Wu, J. Chen, S.M. Babar, Effect of Cr3C2 content on 316L stainless steel fabricated by laser melting deposition. Vacuum. 147, 255 (2018). https://doi.org/10.1016/j.vacuum.2017.10.027

    Article  CAS  Google Scholar 

  17. J. Yidan, H. Zhenying, H. Wenqiang, L. Xue, Y. Qun, W. Yuanbo, Z. Yang, D. Davoud, In-situ hybrid Cr3C2 and γ′-Ni3(Al, Cr) strengthened Ni matrix composites: microstructure and enhanced properties. Mater. Sci. Eng. A. 820, 921–5093 (2021). https://doi.org/10.1016/j.msea.2021.141524

    Article  CAS  Google Scholar 

  18. Z. Jiachen, Y. Zhong, Y. Xigang et al., A low-cost and high-performance casted titanium matrix composite with Cr3C2 additions. Mater. Lett. (2023). https://doi.org/10.1016/j.matlet.2022.133407

    Article  Google Scholar 

  19. M. Yousef, M. Reza, M.J. Mohammad, S. Mohsen, H. Akbar, Mechanical properties and tribological performance of A356/Cr3C2-NiCr surface composite developed by high-velocity oxy-fuel and post friction stir processing treatment. Surf. Interfaces. 28, 1454 (2022). https://doi.org/10.1016/j.surfin.2021.101627

    Article  CAS  Google Scholar 

  20. A.M. Pinar, Optimization of process parameters with minimum surface roughness in the pocket machining of AA5083 aluminum alloy via taguchi method. Arab. J. Sci. Eng. 38, 705–714 (2013). https://doi.org/10.1007/s13369-012-0372-5

    Article  CAS  Google Scholar 

  21. B. Prosanta, M. Durbadal, K.M. Manas, Failures analysis of in-situ Al–Mg2Si composites using actual microstructure based model. Mater. Sci. Eng. A. (2020). https://doi.org/10.1016/j.msea.2020.140155

    Article  Google Scholar 

  22. N. Yüksel, S. Şahin, Wear behavior–hardness–microstructure relation of Fe–Cr–C and Fe–Cr–C–B based hardfacing alloys. Mater. Des. 58, 491–498 (2014). https://doi.org/10.1016/j.matdes.2014.02.032

    Article  CAS  Google Scholar 

  23. Y. Feng, J. Shan et al., Effect of Cr3C2 content on the microstructure and wear resistance of Fe3Al/Cr3C2 composites. Coatings. 12, 1980 (2022). https://doi.org/10.3390/coatings12121980

    Article  CAS  Google Scholar 

  24. A. Dolata-Grosz et al. Aluminium matrix cast composite (Amcc) with hybrid reinforcement, 15, 70-78 (2005).

  25. K. Jatinder et al., Comparative study on the mechanical, tribological, morphological and structural properties of vortex casting processed, Al–SiC–Cr hybrid metal matrix composites for high strength wear-resistant applications: fabrication and characterizations. J. Market. Res. 9, 13607–13615 (2020). https://doi.org/10.1016/j.jmrt.2020.10.001

    Article  CAS  Google Scholar 

  26. R.R. Mohan, R. Venkatraman et al., Processing of aluminium-silicon alloy with metal carbide as reinforcement through powder-based additive manufacturing: a critical study. Scanning. (2022). https://doi.org/10.1155/2022/5610333

    Article  Google Scholar 

  27. K.M. Shorowordi, T. Laoui, A.S.M.A. Haseeb, J.P. Celis, L. Froyen, Microstructure and interface characteristics of B4C, SiC and Al2O3 reinforced Al matrix composites: a comparative study. J. Mater. Process. Technol. 142, 738–743 (2003). https://doi.org/10.1016/S0924-0136(03)00815-X

    Article  CAS  Google Scholar 

  28. U. Erb, G. Palumbo, J.L. McCrea The processing of bulk nanocrystalline metals and alloys by electrodeposition, Woodhead Publishing, 118-151 (2011). https://doi.org/10.1533/9780857091123.1.118.

  29. E. Ghasali, A. Pakseresht, F. Safari-Kooshali, M. Agheli, T. Ebadzadeh, Investigation on microstructure and mechanical behavior of Al–ZrB2 composite prepared by microwave and spark plasma sintering. Mater. Sci. Eng. A. 627, 27–30 (2015)

    Article  CAS  Google Scholar 

  30. S.E. Shin, H.J. Choi, J.H. Shin, D.H. Bae, Strengthening behavior of few-layered graphene/aluminum composites. Carbon. 82, 143–151 (2015). https://doi.org/10.1016/j.carbon.2014.10.044

    Article  CAS  Google Scholar 

  31. X. Yuming, M. Xiangchen, L. Yulong, M. Dongxin, W. Long, H. Yongxian, Insight into ultra-refined grains of aluminum matrix composites via deformation-driven metallurgy. Compos. Commun. (2021). https://doi.org/10.1016/j.coco.2021.100776

    Article  Google Scholar 

  32. L.K. Pillari, A.K. Shukla, S.V.S.N. Murty et al., Processing and characterization of graphene and multi-wall carbon nanotube-reinforced aluminium alloy AA2219 composites processed by ball milling and vacuum hot pressing. Metallogr. Microstruct. Anal. 6, 289–303 (2017). https://doi.org/10.1007/s13632-017-0365-6

    Article  CAS  Google Scholar 

  33. R.M. Penchal, F.R. Ubaid, S. Abdul, M.A.M. Adel, Comparative study of structural and mechanical properties of Al–Cu composites prepared by vacuum and microwave sintering techniques. J. Market. Res. 7, 165–172 (2018). https://doi.org/10.1016/j.jmrt.2017.10.003

    Article  CAS  Google Scholar 

  34. R. SK, K. Prabu, G. Rajamurugan, P. Ponnusamy, Comparative analysis of particle size on the mechanical and metallurgical characteristics of Al2O3-reinforced sintered and extruded AA2014 nano-hybrid composite. J. Compos. Mater. 53, 4369–4384 (2019). https://doi.org/10.1177/0021998319856676

    Article  CAS  Google Scholar 

  35. V. Bharath, S.S. Ajawan, M. Nagaral et al., Characterization and mechanical properties of 2014 aluminum alloy reinforced with Al2O3p composite produced by two-stage stir casting route. J. Inst. Eng. India Ser. C. 100, 277–282 (2019). https://doi.org/10.1007/s40032-018-0442-x

    Article  Google Scholar 

  36. C.S. Vidyasagar, D.B. Karunakar, Improvement of mechanical properties of 2024 AA by reinforcing yttrium and processing through spark plasma sintering. Arab. J. Sci. Eng. 44, 7859–7873 (2019). https://doi.org/10.1007/s13369-019-03924-5

    Article  CAS  Google Scholar 

  37. Wu. Lei, Yu. Zhaoji et al., Microstructure and tensile properties of aluminum powder metallurgy alloy prepared by a novel low-pressure sintering. J. Market. Res. 14, 1419–1429 (2021). https://doi.org/10.1016/j.jmrt.2021.07.074

    Article  CAS  Google Scholar 

  38. A. Wąsik, B. Leszczyńska-Madej, M. Madej et al., Effect of heat treatment on microstructure of Al4Cu-SiC composites consolidated by powder metallurgy technique. J. Mater. Eng. Perform. 29, 1841–1848 (2020). https://doi.org/10.1007/s11665-020-04685-1

    Article  CAS  Google Scholar 

  39. A. Sakthivel, R. Palaninathan, R. Velmurugan et al., Production and mechanical properties of SiCp particle-reinforced 2618 aluminum alloy composites. J. Mater. Sci. 43, 7047–7056 (2008). https://doi.org/10.1007/s10853-008-3033-z

    Article  CAS  Google Scholar 

  40. N. Mathan Kumar, S. Senthil Kumaran, L.A. Kumaraswamidhas, Wear behaviour of Al 2618 alloy reinforced with Si3N4, AlN and ZrB2 in situ composites at elevated temperatures. Alex. Eng. J. 5, 19–36 (2016). https://doi.org/10.1016/j.aej.2016.01.017

    Article  Google Scholar 

  41. L. Ceschini, G. Minak, A. Morri, Forging of the AA2618/20vol.% Al2O3p composite: effects on microstructure and tensile properties. Compos. Sci. Technol. 69, 1783–1789 (2009). https://doi.org/10.1016/j.compscitech.2008.08.027

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Sophisticated Analytical Instruments Facility, DST-India for providing SEM facilities.

Author information

Authors and Affiliations

Authors

Contributions

NVSB was contributed to conception and design of study, acquisition of data, and analysis and/or interpretation of data. VVKPD drafted the manuscript. NVSB and VVKPD revised the manuscript critically for important intellectual content.

Corresponding author

Correspondence to Naga Venkata Srinivas Borra.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borra, N.V.S., Davuluri, V.V.K.P. Influence of Cr3C2 Addition on Microstructure and Mechanical Properties of AA2618 Composites by Powder Metallurgy. Metallogr. Microstruct. Anal. 12, 788–801 (2023). https://doi.org/10.1007/s13632-023-01003-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-023-01003-8

Keywords

Navigation